Long-range surface plasmon resonance (LRSPR), generated from a coupled plasmon polariton in a thin metal slab sandwiched by two dielectrics, has attracted more and more attention due to its merits, such as longer propagation and deeper penetration than conventional single-interface surface plasmon resonance. Many useful applications related to light–medium interaction have been demonstrated based on the LRSPR effect, especially in the sensing area. Here, we propose and demonstrate an LRSPR-based refractive index sensor by using a SiO2-Au-TiO2 heterostructure, in which a D-shaped honeycomb-microstructure optical fiber (MOF) is designed as the silica substrate and then deposited with a gold film and thin-layer titanium dioxide (TiO2). By using the full-vector finite-element method (FEM), this heterostructure is numerically investigated and demonstrated to excite LRSPR without a buffer layer, which is usually necessary in previous LRSPR devices. Through comprehensive discussion about the influence of structural parameters on the resonant wavelength, the excitation of the LRSPR in the proposed heterostructure is revealed to be highly related to the effective refractive index of MOF’s fundamental core mode, which is mainly determined by the MOF’s pitch, the thicknesses of the silica web and the planar-layer silica. Moreover, the thin-layer TiO2 plays an important role in significantly enhancing the resonance and the sensitivity to analyte’s refractive index as well, when it is coated on the top of the Au film rather than between the metal and waveguide. Finally, the proposed LRSPR sensor based on SiO2-Au-TiO2 heterostructure shows an ultra-high wavelength sensitivity of 20,100 nm/RIU and the corresponding minimum resolution is as low as 4.98×10−7 RIU. Thus, the proposed LRSPR device offers considerable potential for sensing applications in biomedical and biochemical areas.
Long-range surface plasmon resonances (LRSPRs) are featured with longer propagation and deeper penetration, compared with conventional surface plasmon resonances (SPRs). Thus, LRSPR-based fiber sensors are considered to have great potential for highly sensitive detection in chemistry or biomedicine areas. Here, we propose and demonstrate a near-infrared LRSPR sensor based on a D-shaped honeycomb microstructured optical fiber (MOF) directly coated with gold film. Although there is no additional heterogeneous buffer layer, the optical field of the long-range surface plasmon polariton (LRSPP) mode penetrates strongly into the analyte region. Thus the effective refractive index of the LRSPP mode depends highly on the analyte’s material refractive index and an abnormal dispersion relationship between the LRSPP mode and MOF’s y-polarized core mode is observed. The mechanism of the LRSPR excitation in the coupling zone is attributed to an avoided crossing effect between these two modes. It also results in the generation of a narrow-bandwidth peak in the loss spectrum of the core mode. Further discussion shows that the resonance wavelength is mainly determined by the core size that is contributed by the MOF’s cladding pitch, silica-web thickness and planar-layer-silica thickness together. It indicates that the operation wavelength of the proposed LRSPR device can be flexibly tuned in a broadband wavelength range, even longer than 2 µm, through appropriately designing the MOF’s structural parameters. Finally, the proposed LRSPR sensor shows the highest wavelength sensitivity of 14700 nm/RIU and highest figure of merit of 475 RIU−1 for the analyte refractive index range from 1.33 to 1.39.
A long-range SPR(LRSPR) sensor based on a D-shaped honeycomb-lattice MOF coated with Au and graphene film was proposed and numerically investigated. The sensor’s highest sensitivity reaches 16700 nm/RIU and the minimum resolution is 5.99×10−7 RIU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.