The effect of and the optimal parameters for intense pulsed light (IPL) with a 420-nm filter on an isolate of the fungus Trichophyton rubrum (T. rubrum) were examined in vitro. Colonies of T. rubrum were irradiated by using 420-nm IPL with various pulse numbers and energies. Colony areas were photographed and compared with those of untreated colonies to assess growth inhibition. Statistically significant inhibition of T. rubrum growth was detected in colonies treated with 12 pulses of greater than or equal to 12 J/cm. The optimal parameters of 420-nm IPL were 12 pulses of 12 J/cm. However, more in vitro and in vivo studies are necessary to investigate and explore this mechanism to determine whether IPL would have a potential use in the treatment of fungal infections of the skin.
Trichophyton rubrum is a common dermatophyte of the skin. The aim of this experiment was to explore the role of nitric oxide (NO) in the inhibition of T. rubrum growth induced by 420-nm intense pulsed light (IPL). This study found that nitric oxide synthase (NOS) and NO levels were increased, whereas asymmetric dimethylarginine (ADMA) level, keratinase activity, and fungal viability were decreased after IPL treatment compared with the control condition in vitro. Moreover, micromorphology was damaged by IPL treatment. Fungal viability was increased, and the damage to the fungal structure was reduced after pretreatment with an NOS inhibitor (L-NMMA) compared with IPL treatment alone. Compared with IPL alone, pretreatment with L-NMMA decreased NOS expression and NO level and increased keratinase activity. We found that 420-nm IPL treatment can inhibit the growth of T. rubrum by regulating NO in vitro.
Trichophyton rubrum (T. rubrum) is one of the most important agents of dermatophyte infection in humans. The aim of this experiment was to evaluate the effect of HaCaT cells on T. rubrum, investigate the responsible mechanism of action, and explore the role of reactive oxygen species (ROS) and nitric oxide (NO) in the inhibition of T. rubrum growth by HaCaT cells. The viability of fungi treated with HaCaT cells alone and with HaCaT cells combined with pretreatment with the NADPH oxidase inhibitor (DPI) or the nitric oxide synthase (NOS) inhibitor L-NMMA was determined by enumerating the colony-forming units. NOS, ROS, and NO levels were quantified using fluorescent probes. The levels of the NOS inhibitor asymmetric dimethylarginine (ADMA) were determined by enzyme-linked immunosorbent assay (ELISA). Micromorphology was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, fungal keratinase activity was assessed by measuring dye release from keratin azure. In vitro fungal viability, keratinase activity, and ADMA content decreased after HaCaT cell intervention, whereas the levels of ROS, NO, and NOS increased. The micromorphology was abnormal. Fungi pretreated with DPI and L-NMMA exhibited opposite effects. HaCaT cells inhibited the growth and pathogenicity of T. rubrum in vitro. A suggested mechanism is that ROS and NO play an important role in the inhibition of T. rubrum growth by HaCaT cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.