[1] The radiative effects from increased concentrations of well-mixed greenhouse gases (WMGHGs) represent the most significant and best understood anthropogenic forcing of the climate system. The most comprehensive tools for simulating past and future climates influenced by WMGHGs are fully coupled atmosphere-ocean general circulation models (AOGCMs). Because of the importance of WMGHGs as forcing agents it is essential that AOGCMs compute the radiative forcing by these gases as accurately as possible. We present the results of a radiative transfer model intercomparison between the forcings computed by the radiative parameterizations of AOGCMs and by benchmark line-by-line (LBL) codes. The comparison is focused on forcing by CO 2 , CH 4 , N 2 O, CFC-11, CFC-12, and the increased H 2 O expected in warmer climates. The models included in the intercomparison include several LBL codes and most of the global models submitted to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). In general, the LBL models are in excellent agreement with each other. However, in many cases, there are substantial discrepancies among the AOGCMs and between the AOGCMs and LBL codes. In some cases this is because the AOGCMs neglect particular absorbers, in particular the near-infrared effects of CH 4 and N 2 O, while in others it is due to the methods for modeling the radiative processes. The biases in the AOGCM forcings are generally largest at the surface level. We quantify these differences and discuss the implications for interpreting variations in forcing and response across the multimodel ensemble of AOGCM simulations assembled for the IPCC AR4.Citation: Collins, W. D., et al., (2006), Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the
The mega‐eruption of Toba, Sumatra, occurred around 73 Ka ago, during the onset of a glaciation of the Late Quaternary. This coincidence combined with the unprecedented amount of sulphur released by this volcano has led to the hypothesis that Toba sulphate aerosols caused a transient surface cooling which may have contributed to a shift of the climate system. Because of the self limiting effect of gravitational sedimentation, the climatic impact of extremely large sulphur injections into the stratosphere are thought to be rather limited. Here we present model calculations combining microphysical and chemical feedbacks which show that the eruption could instead have led to the formation of a long‐lasting volcanic aerosol layer. Although the concentrations of radiatively active species such as O3 or SO2 could also have been considerably perturbed, the resulting forcings should have only slightly moderated the aerosol cooling effect during the first few years following the eruption. According to our results, extremely high stratospheric sulphur loading could lead to a more prolonged effect on the climate than previously assumed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.