BackgroundMetastasis is the most pivotal cause of mortality in cancer patients. Immune tolerance plays a crucial role in tumor progression and metastasis.Methods and FindingsIn this study, we investigated the potential roles and mechanisms of TLR2 signaling on tumor metastasis in a mouse model of intravenously injected B16 melanoma cells. Multiple subtypes of TLRs were expressed on B16 cells and several human cancer cell lines; TLR2 mediated the invasive activity of these cells. High metastatic B16 cells released more heat shock protein 60 than poor metastatic B16-F1 cells. Importantly, heat shock protein 60 released by tumor cells caused a persistent activation of TLR2 and was critical in the constitutive activation of transcription factor Stat3, leading to the release of immunosuppressive cytokines and chemokines. Moreover, targeting TLR2 markedly reduced pulmonary metastases and increased the survival of B16-bearing mice by reversing B16 cells induced immunosuppressive microenvironment and restoring tumor-killing cells such as CD8+ T cells and M1 macrophages. Combining an anti-TLR2 antibody and a cytotoxic agent, gemcitabine, provided a further improvement in the survival of tumor-bearing mice.Conclusions and SignificanceOur results demonstrate that TLR2 is an attractive target against metastasis and that targeting immunosuppressive microenvironment using anti-TLR2 antibody is a novel therapeutic strategy for combating a life-threatening metastasis.
Our aims were to investigate the hypoglycemic effects and mechanisms of action of Ganoderma lucidum polysaccharides (GLPs) administered for 7 days in type 2 diabetic mice. The mice were randomly divided into four groups (8 mice/group): normal control group, diabetic control group, low-dose GLP-treated diabetic group (50 mg/kg/d), and high-dose GLP-treated diabetic group (100 mg/kg/d). Diabetes was induced by streptozotocin injection and high-fat dietary feeding. At the end of the study, fasting serum glucose, insulin, body weight (BW) and epididymal white adipose tissue weight were measured. The hepatic mRNA levels of glycogen phosphorylase (GP), fructose-1,6-bisphosphatase (FBPase), phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) genes were determined by real-time polymerase chain reaction. Both doses of GLPs significantly decreased fasting serum glucose, insulin and epididymal fat/BW ratio compared with the diabetic control group (p < 0.05). The hepatic mRNA levels of GP, FBPase, PEPCK and G6Pase were significantly lower in both GLP-treated groups compared with the diabetic control group. Taken together, GLPs significantly decrease fasting serum glucose levels in type 2 diabetic mice in a dose-dependent manner. The decreases in fasting serum glucose levels may be associated with decreased mRNA expression levels of several key enzymes involved in gluconeogenesis and/or glycogenolysis.
These results indicate that intracellular and extracellular HSP70 have different roles in the regulation of cardiac remodelling and function in response to hypertension. Extracellular HSP70 is a potential therapeutic target against cardiac hypertrophy and fibrosis.
Hypertension-induced cardiovascular hypertrophy and fibrosis are critical in the development of heart failure. The activity of TLRs has been found to be involved in the development of pressure overload-induced myocardial hypertrophy and cardiac fibrosis. We wondered whether vaccine bacillus Calmette-Guérin (BCG), which activated TLR4 to elicit immune responses, modulated the pressure overload-stimulated cardiovascular hypertrophy and cardiac fibrosis in the murine models of abdominal aortic constriction (AAC)-induced hypertension. Before or after AAC, animals received BCG, TLR4 agonist, IFN-γ, or TLR4 antagonist i.p. BCG and TLR4 agonist significantly prevented AAC-induced cardiovascular hypertrophy and reactive cardiac fibrosis with no changes in hemodynamics. Moreover, TLR4 antagonist reversed the BCG- and TLR4 agonist-induced actions of anti-cardiovascular hypertrophy and cardiac fibrosis. BCG decreased the expression of TLR2 or TLR4 on the heart tissue but TLR4 agonist increased the expression of TLR2 or TLR4 on the immune cells that infiltrate into the heart tissue. This led to an increased expression ratio of IFN-γ/TGF-β in the heart. The cardiac protective effects of BCG and TLR4 agonist are related to their regulation of ERK-Akt and p38-NF-κB signal pathways in the heart. In conclusion, the activity of TLR4 plays a critical role in the mediation of pressure overload-induced myocardial hypertrophy and fibrosis. The regulation of immune responses by BCG and TLR4 agonist has a great potential for the prevention and treatment of hypertension-induced myocardial hypertrophy and cardiac fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.