We present ALMA Band-3/7 observations towards ‘the Heart’ of a massive hub-filament system (HFS) SDC335, to investigate its fragmentation and accretion. At a resolution of ∼0.03 pc, 3 mm continuum emission resolves two massive dense cores MM1 and MM2, with $383(^{\scriptscriptstyle +234}_{\scriptscriptstyle -120})$ M⊙ (10–24 % mass of ‘the Heart’) and $74(^{\scriptscriptstyle +47}_{\scriptscriptstyle -24})$ M⊙, respectively. With a resolution down to 0.01 pc, 0.87 mm continuum emission shows MM1 further fragments into six condensations and multi-transition lines of H2CS provide temperature estimation. The relation between separation and mass of condensations at a scale of 0.01 pc favors turbulent Jeans fragmentation where the turbulence seems to be scale-free rather than scale-dependent. We use the H13CO+ J = 1 − 0 emission line to resolve the complex gas motion inside ‘the Heart’ in position-position-velocity space. We identify four major gas streams connected to large-scale filaments, inheriting the anti-clockwise spiral pattern. Along these streams, gas feeds the central massive core MM1. Assuming an inclination angle of 45(± 15)° and a H13CO+ abundance of 5(± 3) × 10−11, the total mass infall rate is estimated to be 2.40(± 0.78) × 10−3 M⊙ yr−1, numerically consistent with the accretion rates derived from the clump-scale spherical infall model and the core-scale outflows. The consistency suggests a continuous, near steady-state, and efficient accretion from global collapse, therefore ensuring core feeding. Our comprehensive study of SDC335 showcases the detailed gas kinematics in a prototypical massive infalling clump, and calls for further systematic and statistical studies in a large sample.
G10.21-0.31 is a 70 μm dark high-mass starless core (M > 300 M ⊙ within r < 0.15 pc) identified in the Spitzer, Herschel, and APEX continuum surveys, and is believed to harbor the initial stages of high-mass star formation. We present Atacama Large Millimeter/submillimeter Array (ALMA) and Submillimeter Array observations to resolve the internal structure of this promising high-mass starless core. Sensitive high-resolution ALMA 1.3 mm dust continuum emission reveals three cores of mass ranging within 11–18 M ⊙, characterized by a turbulent fragmentation. Cores 1, 2, and 3 represent a coherent evolution of three different stages, characterized by outflows (CO and SiO), gas temperature (H2CO), and deuteration (N2D+/N2H+). We confirm the potential for formation of high-mass stars in G10.21 and explore the evolution path of high-mass star formation. Yet, no high-mass prestellar core is present in G10.21. This suggests a dynamical star formation where cores grow in mass over time.
In order to study the initial conditions of massive star formation, we have previously built a sample of 463 high-mass starless clumps (HMSCs) across the inner Galactic plane covered by multiple continuum surveys. Here, we use 13CO(2–1) line data from the SEDIGISM survey, which covers 78° in longitude (−60° < l < 18°, ∣b∣ < 0.°5) with 30″ resolution, to investigate the global dynamical state of these parsec-scale HMSCs (207 sources with good-quality data, mass 102–105 M ⊙, size 0.1–3.6 pc). We find that most HMSCs are highly turbulent with a median Mach number ∼ 8.2 , and 44%–55% of them are gravitationally bound (with virial parameter α vir ≲ 2) if no magnetic fields are present. A median magnetic field strength of 0.33–0.37 mG would be needed to support these bound clumps against collapse, in agreement with previous observations of magnetic fields in regions of massive star formation. Luminosity-to-mass ratio, an important tracer of evolutionary stage, is strongly correlated with dust temperature. Magnetic field strength is also correlated with density. The Larson line width–size scaling does not hold in HMSCs. This study advances our understanding of the global properties of HMSCs, and our high-resolution observations with the Atacama Large Millimeter/submillimeter Array are in progress to study the resolved properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.