This paper describes the work to design a composite bladed marine propeller. The hydrodynamic load and the nonlinear structural responses are predicted by the coupled FEM/CFD method. A pre-twist strategy is used to determine a new geometry of the composite bladed propeller for improving the hydrodynamic performance. Different material schemes and symmetric stacking sequences are considered as the design parameters. An evaluation method of multi-objective function is presented for optimizing the strength, deflection and mass at design conditions. Numerical results are obtained and the optimal design scheme of the composite bladed propeller is obtained.
In this article, the finite element method (FEM) using cohesive element is applied to predict the delamination behavior in laminated composite with double delaminations embedded in different depth positions under compressive load. In particular, compared with single delamination composites, the interaction between delaminations and the complicated propagation behavior are discussed. Furthermore, the study is focused on the significant effects of double delaminations on delamination buckling and growth behavior, such as the distance between double delaminations and the delaminations’ depth position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.