Rodent models are essential to translational research in health and disease. Investigation in rodent brain function and organization at the systems level using resting-state functional magnetic resonance imaging (rsfMRI) has become increasingly popular. Due to this rapid progress, publicly shared rodent rsfMRI databases can be of particular interest and importance to the scientific community, as inspired by human neuroscience and psychiatric research that are substantially facilitated by open human neuroimaging datasets. However, such databases in rats are still rare. In this paper, we share an open rsfMRI database acquired in 90 rats with a well-established awake imaging paradigm that avoids anesthesia interference. Both raw and preprocessed data are made publicly available. Procedures in data preprocessing to remove artefacts induced by the scanner, head motion and non-neural physiological noise are described in details. We also showcase inter-regional functional connectivity and functional networks obtained from the database.
The default mode network (DMN) is a principal brain network in the mammalian brain. Although the DMN in humans has been extensively studied with respect to network structure, function, and clinical implications, our knowledge of DMN in animals remains limited. In particular, the functional role of DMN nodes, and how DMN organization relates to DMN-relevant behavior are still elusive. Here we investigated the causal relationship of inactivating a pivotal node of DMN (i.e., dorsal anterior cingulate cortex [dACC]) on DMN function, network organization, and behavior by combining chemogenetics, resting-state functional magnetic resonance imaging (rsfMRI) and behavioral tests in awake rodents. We found that suppressing dACC activity profoundly changed the activity and connectivity of DMN, and these changes were associated with altered DMN-related behavior in animals. The chemo-rsfMRI-behavior approach opens an avenue to mechanistically dissecting the relationships between a specific node, brain network function, and behavior. Our data suggest that, like in humans, DMN in rodents is a functional network with coordinated activity that mediates behavior.
Withdrawal from amphetamine increases anxiety and reduces the ability to cope with stress, factors that are believed to contribute to drug relapse. Stress-induced serotonergic transmission in the central nucleus of the amygdala is associated with anxiety states and fear. Conversely, increases in stress-induced ventral hippocampal serotonin have been linked to coping mechanisms. The goal of this study is to understand neurobiological changes induced by amphetamine that contribute to stress-sensitivity during withdrawal. We tested the hypothesis that limbic serotonergic responses to restraint stress would be altered in male Sprague-Dawley rats chronically pre-treated with amphetamine (2.5 mg/kg, ip.) followed by two weeks withdrawal. Amphetamine withdrawal resulted in increased stress-induced behavioral arousal relative to control treatment, suggesting that drug withdrawal induced a greater sensitivity to the stressor. When microdialysis was used to determine the effects of restraint on extracellular serotonin, stress-induced increases in serotonin were abolished in the ventral hippocampus and augmented in the central amygdala during amphetamine withdrawal. Reverse dialysis of the glucocorticoid receptor antagonist mifepristone into the ventral hippocampus blocked the stress-induced serotonin increase in saline pre-treated rats, suggesting that glucocorticoid receptors mediate stress-induced serotonin increases in the ventral hippocampus. However, mifepristone had no effect on stress-induced serotonin increases in the central amygdala, indicating that stress increases serotonin in this region independent of glucocorticoid receptors. During amphetamine withdrawal, the absence of stress-induced increases in ventral hippocampus serotonin combined with enhanced stress-induced serotonergic responses in the central amygdala may contribute to drug relapse by decreasing stress-coping ability and heightening stress responsiveness.
Withdrawal from amphetamine is associated with increased anxiety and sensitivity to stressors which are thought to contribute to relapse. Rats undergoing amphetamine withdrawal fail to exhibit stress-induced increases in serotonin (5-HT) release in the ventral hippocampus and show heightened anxiety-like behaviors. Therefore, we tested the hypothesis that reduced 5-HT levels in the ventral hippocampus is a causal mechanism in increasing anxiety-like behaviors during amphetamine withdrawal. First, we tested whether reducing 5-HT levels in the ventral hippocampus directly increases anxiety behavior. Male rats were bilaterally infused with 5,7-DHT into the ventral hippocampus, which produced a 83% decrease ventral hippocampus 5-HT content, and were tested on the elevated plus maze (EPM) for anxiety-like behavior. Reducing ventral hippocampus 5-HT levels decreased the time spent in the open arms of the maze, suggesting diminished ventral hippocampus 5-HT levels increases anxiety-like behavior. Next, we tested whether increasing 5-HT levels in the ventral hippocampus reverses anxiety behavior exhibited by rats undergoing amphetamine withdrawal. Rats were treated daily with either amphetamine (2.5 mg/kg, ip.) or saline for 2 weeks, and at 2 weeks withdrawal, were infused with the selective serotonin reuptake inhibitor paroxetine (0.5 μM) bilaterally into the ventral hippocampus and tested for anxiety-like behavior on the EPM. Rats pre-treated with amphetamine exhibited increased anxiety-like behavior on the EPM. This effect was reversed by ventral hippocampus infusion of paroxetine. Our results suggest that 5-HT levels in the ventral hippocampus is critical for regulating anxiety behavior. Increasing 5-HT levels during withdrawal may be an effective strategy for reducing anxiety-induced drug relapse.
The architecture of brain networks has been extensively studied in multiple species. However, exactly how the brain network reconfigures when a local region, particularly a hub region, stops functioning remains elusive. By combining chemogenetics and resting-state functional magnetic resonance imaging (rsfMRI) in an awake rodent model, we investigated the causal impact of acutely inactivating a hub region (i.e. the dorsal anterior cingulate cortex) on brain network properties. We found that suppressing neural activity in a hub could have a ripple effect that went beyond the hub-related connections and propagated to other neural connections across multiple brain systems. In addition, hub dysfunction affected the topological architecture of the whole-brain network in terms of the network resilience and segregation. Selectively inhibiting excitatory neurons in the hub further changed network integration. None of these changes were observed in sham rats or when a non-hub region (i.e. the primary visual cortex) was perturbed. This study has established a system that allows for mechanistically dissecting the relationship between local regions and brain network properties. Our data provide direct evidence supporting the hypothesis that acute dysfunction of a brain hub can cause large-scale network changes. These results also provide a comprehensive framework documenting the differential impact of hub versus non-hub nodes on network dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.