The use of metal-organic frameworks (MOFs) so far has largely relied on nonspecific binding interactions to host small molecular guests. We used long organic struts (approximately 2 nanometers) incorporating 34- and 36-membered macrocyclic polyethers as recognition modules in the construction of several crystalline primitive cubic frameworks that engage in specific binding in a way not observed in passive, open reticulated geometries. MOF-1001 is capable of docking paraquat dication (PQT2+) guests within the macrocycles in a stereoelectronically controlled fashion. This act of specific complexation yields quantitatively the corresponding MOF-1001 pseudorotaxanes, as confirmed by x-ray diffraction and by solid- and solution-state nuclear magnetic resonance spectroscopic studies performed on MOF-1001, its pseudorotaxanes, and their molecular strut precursors. A control experiment involving the attempted inclusion of PQT2+ inside a framework (MOF-177) devoid of polyether struts showed negligible uptake of PQT2+, indicating the importance of the macrocyclic polyether in PQT2+ docking.
Sodium-ion batteries (SIBs) are considered as complementary alternatives to lithium-ion batteries for grid energy storage due to the abundance of sodium. However, low capacity, poor rate capability, and cycling stability of existing anodes significantly hinder the practical applications of SIBs. Herein, ultrathin two-dimensional SnS2 nanosheets (3-4 nm in thickness) are synthesized via a facile refluxing process toward enhanced sodium storage. The SnS2 nanosheets exhibit a high apparent diffusion coefficient of Na(+) and fast sodiation/desodiation reaction kinetics. In half-cells, the nanosheets deliver a high reversible capacity of 733 mAh g(-1) at 0.1 A g(-1), which still remains up to 435 mAh g(-1) at 2 A g(-1). The cell has a high capacity retention of 647 mA h g(-1) during the 50th cycle at 0.1 A g(-1), which is by far the best for SnS2, suggesting that nanosheet morphology is beneficial to improve cycling stability in addition to rate capability. The SnS2 nanosheets also show encouraging performance in a full cell with a Na3V2(PO4)3 cathode. In addition, the sodium storage mechanism is investigated by ex situ XRD coupled with high-resolution TEM. The high specific capacity, good rate capability, and cycling durability suggest that SnS2 nanosheets have great potential working as anodes for high-performance SIBs.
The defect passivation of perovskite films is an efficacious way to further boost the power conversion efficiency (PCE) and long-term stability of perovskite solar cells (PSCs). In this work, ionic liquids (ILs) of 1-butyl-2,3-dimethylimidazolium chloride ([BMMIm]Cl) are used as a modification layer in perovskite films in carbon-based CsPbBr 3 PSCs without a hole-transporting material (HTM) for passivating the surface defects. The preliminary results demonstrate that the [BMMIm]Cl modifier passivates the surface defects of the perovskite film and reduces the valence band of perovskite close to the work function of the carbon electrode, which causes a remarkably inhibited nonradiative and radiative charge recombination, improved energy-level matching, and decreased energy loss. After optimization, a champion efficiency of 9.92% with a V oc as high as 1.61 V is achieved for the [BMMIm]Cl tailored carbon-based CsPbBr 3 PSC without HTM, which is improved by 61.3% in comparison with 6.15% for the control device. Furthermore, the encapsulation-free PSC presents good longterm stability after storage in an air atmosphere with 70% RH at 20 °C or 0% RH at 80 °C as well as under continuous illumination conditions for 30 days. The significantly improved PCE and stability in high humidity or temperature suggest that the perovskite passivation by ILs is an effective strategy for fabricating high-PCE and stable PSCs.
Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.