BackgroundAmbient air pollution accelerates lung function decline among adults, however, there are limited data about its role in the development and progression of early stages of interstitial lung disease.AimsTo evaluate associations of long-term exposure to traffic and ambient pollutants with odds of interstitial lung abnormalities (ILA) and progression of ILA on repeated imaging.MethodsWe ascertained ILA on chest CT obtained from 2618 Framingham participants from 2008 to 2011. Among 1846 participants who also completed a cardiac CT from 2002 to 2005, we determined interval ILA progression. We assigned distance from home address to major roadway, and the 5-year average of fine particulate matter (PM2.5), elemental carbon (EC, a traffic-related PM2.5 constituent) and ozone using spatio-temporal prediction models. Logistic regression models were adjusted for age, sex, body mass index, smoking status, packyears of smoking, household tobacco exposure, neighbourhood household value, primary occupation, cohort and date.ResultsAmong 2618 participants with a chest CT, 176 (6.7%) had ILA, 1361 (52.0%) had no ILA, and the remainder were indeterminate. Among 1846 with a preceding cardiac CT, 118 (6.4%) had ILA with interval progression. In adjusted logistic regression models, an IQR difference in 5-year EC exposure of 0.14 µg/m3 was associated with a 1.27 (95% CI 1.04 to 1.55) times greater odds of ILA, and a 1.33 (95% CI 1.00 to 1.76) times greater odds of ILA progression. PM2.5 and O3 were not associated with ILA or ILA progression.ConclusionsExposure to EC may increase risk of progressive ILA, however, associations with other measures of ambient pollution were inconclusive.
Rationale: Cigarette smoke exposure is a risk factor for many lung diseases, and histologic studies suggest that tobacco-related vasoconstriction and vessel loss plays a role in the development of emphysema. However, it remains unclear how tobacco affects the pulmonary vasculature in general populations with a typical range of tobacco exposure, and whether these changes are detectable by radiographic methods. Objectives: To determine whether tobacco exposure in a generally healthy population manifests as lower pulmonary blood vessel volumes and vascular pruning on imaging. Methods: A total of 2,410 Framingham Heart Study participants with demographic data and smoking history underwent volumetric whole-lung computed tomography from 2008 to 2011. Automated algorithms calculated the total blood volume of all intrapulmonary vessels (TBV), smaller peripheral vessels (defined as cross-sectional area ,5 mm 2 [BV5]), and the relative fraction of small vessels (BV5/TBV). Tobacco exposure was assessed as smoking status, cumulative pack-years, and secondhand exposure. We constructed multivariable linear regression models to evaluate associations of cigarette exposure and pulmonary blood vessel volume measures, adjusting for demographic covariates, including age, sex, height, weight, education, occupation, and median neighborhood income. Results: All metrics of tobacco exposure (including smoking status, pack-years, and secondhand exposure) were consistently associated with higher absolute pulmonary blood vessel volume, higher small vessel volume, and/or higher small vessel fraction. For example, eversmokers had a 4.6 ml higher TBV (95% confidence interval [CI] = 2.9-6.3, P , 0.001), 2.1 ml higher BV5 (95% CI = 1.3-2.9, P , 0.001), and 0.28 percentage-point-higher BV5/TBV (95% CI = 0.03-0.52, P = 0.03) compared with never-smokers. These associations remained significant after adjustment for percent predicted forced expiratory volume in 1 second, cardiovascular comorbidities, and did not differ based on presence or absence of airflow obstruction. Conclusions: Using computed tomographic imaging, we found that cigarette exposure was associated with higher pulmonary blood vessel volumes, especially in the smaller peripheral vessels. Although, histologically, tobacco-related vasculopathy is characterized by vessel narrowing and loss, our results suggest that radiographic vascular pruning may not be a surrogate of these pathologic changes.
Radiographic abnormalities of the pulmonary vessels, such as vascular pruning, are common in advanced airways disease, but it is unknown if pulmonary vascular volumes are related to measures of lung health and airways disease in healthier populations.In 2388 participants of the Framingham Heart Study computed tomography (CT) sub-study, we calculated total vessel volumes and the small vessel fraction using automated CT image analysis. We evaluated associations with measures of lung function, airflow obstruction on spirometry and emphysema on CT. We further tested if associations of vascular volumes with lung function were present among those with normal forced expiratory volume in 1 s and forced vital capacity.In fully adjusted linear and logistic models, we found that lower total and small vessel volumes were consistently associated with worse measures of lung health, including lower spirometric volumes, lower diffusing capacity and/or higher odds of airflow obstruction. For example, each standard deviation lower small vessel fraction (indicating more severe pruning) was associated with a 37% greater odds of obstruction (OR 1.37, 95% CI 1.11–1.71, p=0.004). A similar pattern was observed in the subset of participants with normal spirometry.Lower total and small vessel pulmonary vascular volumes were associated with poorer measures of lung health and/or greater odds of airflow obstruction in this cohort of generally healthy adults without high burdens of smoking or airways disease. Our findings suggest that quantitative CT assessment may detect subtle pulmonary vasculopathy that occurs in the setting of subclinical and early pulmonary and airways pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.