Electrochemical energy storage systems, specifically lithium and lithium-ion batteries, are ubiquitous in contemporary society with the widespread deployment of portable electronic devices. Emerging storage applications such as integration of renewable energy generation and expanded adoption of electric vehicles present an array of functional demands. Critical to battery function are electron and ion transport as they determine the energy output of the battery under application conditions and what portion of the total energy contained in the battery can be utilized. This review considers electron and ion transport processes for active materials as well as positive and negative composite electrodes. Length and time scales over many orders of magnitude are relevant ranging from atomic arrangements of materials and short times for electron conduction to large format batteries and many years of operation. Characterization over this diversity of scales demands multiple methods to obtain a complete view of the transport processes involved. In addition, we offer a perspective on strategies for enabling rational design of electrodes, the role of continuum modeling, and the fundamental science needed for continued advancement of electrochemical energy storage systems with improved energy density, power, and lifetime.
Silicon (Si) is a promising high-capacity material for lithium-ion batteries; however, its limited reversibility hinders commercial adoption. Approaches such as particle and crystallite size reduction, introduction of conductive carbon, and use of different electrolyte solvents have been explored to overcome these electrochemical limitations. Herein, operando isothermal microcalorimetry (IMC) is used to probe the influence of silicon particle size, electrode composition, and electrolyte additives fluoroethylene carbonate and vinylene carbonate on the heat flow during silicon lithiation. The IMC data are complemented by X-ray photoelectron and Raman spectroscopies to elucidate differences in solid electrolyte interphase (SEI) composition. Nanosized (∼50 nm, n-Si) and micrometer-sized (∼4 μm, μ-Si) silicon electrodes are formulated with and without amorphous carbon and electrochemically lithiated in ethylene carbonate (EC), fluoroethylene carbonate (FEC), or vinylene carbonate (VC) based electrolytes. Notably, n-Si electrodes generate 53−61% more normalized heat relative to their μ-Si counterparts, consistent with increased surface area and electrode/electrolyte reactivity. Introduction of amorphous carbon significantly alters the heat flow profile where multiple exothermic peaks and increased normalized heat dissipation are observed for all electrolyte types. Notably, the VC-containing electrolyte demonstrates the greatest normalized heat dissipation of the electrode compositions tested showing as much as a 50% increase compared to the EC or FEC counterparts. The results are relevant to the understanding of silicon negative electrode function in the presence of electrolyte additives and provide insight relative to silicon containing cell reactivity and safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.