It is growingly recognized that messenger RNAs (mRNAs) are important regulators of various cancers. However, there are few reporters about the function of E2F3 in retinoblastoma (RB), which needs more exploration. In addition, the circRNA circ-0075804 was derived from the E2F3 host gene. The purpose of the study is to figure out the role and molecular regulation mechanism of E2F3 and circ-0075804 in RB. The role of E2F3 in RB was determined through E2F3 silencing and loss of expression was evaluated by real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, CCK-8, colony formation, and 5-ethynyl-2′-deoxyuridine assays. The interactions between E2F3 and circ-0075804 were validated through loss and gain function of circ-0075804. Besides, the role of circ-0075804 in RB was determined by several functional assays. And the binding ability between heterogeneous nuclear ribonucleoprotein K and circ-0075804 was verified by RNA pull-down, Western blot, and RT-qPCR assays. The expression of E2F3 was upregulated in RB cell lines. Furthermore, knockdown of E2F3 inhibited cell proliferation and induced cell apoptosis in RB. And circ-0075804 positively regulated the expression of E2F3. Moreover, circ-0075804 facilitated cell proliferation and suppressed cell apoptosis. Besides, HNRNPK could bind with circ-0075804 in RB. Finally, knockdown of E2F3 partly rescued the promoting role of circ-0075804 overexpression in RB. Overall, circ-0075804 promotes the proliferation of RB via combining HNRNPK to improve the stability of E2F3, which brings new light for treating RB. K E Y W O R D S circ-0075804, E2F3, HNRNPK, retinoblastoma
Purpose: Previous studies have revealed that microRNA-665 (miR-665) is dysregulated in a variety of human cancers. However, little is known regarding its expression profiles and functions in retinoblastoma (RB). Therefore, the aims of our study were to evaluate miR-665 expression in RB and determine the precise roles of miR-665 in the progression of RB. Patients and methods: Herein, RT-qPCR was used to determine miR-665 expression levels in RB tissues and cell lines, and a series of functional experiments were performed to explore the influence of miR-665 on RB cell proliferation, colony formation, apoptosis, migration, and invasion as well as tumor growth. The molecular mechanisms underlying the tumor-suppressive action of miR-665 in RB were also explored. Results: We found that miR-665 was markedly reduced in RB tissues and cell lines and that lower miR-665 expression was strongly associated with tumor size, TNM stage, and differentiation in patients with RB. Exogenous expression of miR-665 suppressed cell proliferation, colony formation, migration, and invasion, and induced cell apoptosis in RB cells, while silencing miR-665 expression had the opposite effects. In addition, upregulation of miR-665 decreased the tumor growth of RB cells in vivo. High-mobility group box 1 (HMGB1) was identified as a direct target of miR-665 in RB cells, and decreasing the expression of HMGB1 simulated the regulatory effects of miR-665 overexpression in RB cells, while knockdown of HMGB1 expression counteracted the miR-665-mediated antitumor effects in RB cells. Moreover, miR-665 was shown to regulate the Wnt/β-catenin signaling pathway by targeting HMGB1 in vitro and in vivo. Conclusion: Taken together, our in vitro and in vivo results suggest that miR-665 acts as a tumor-suppressive miRNA in RB by directly targeting HMGB1 and inactivating the Wnt/βcatenin pathway. Hence, this miRNA is a candidate prognostic biomarker and therapeutic target in patients with RB.
Background/Aims: Age-related macular degeneration (AMD) is the primary cause of senior blindness in developed countries. Mechanisms underlying initiation and development of AMD remained known. Methods: We examined the CD4 + T cell compartments and their functions in AMD patients. Results: AMD patients presented significantly higher frequencies of interferon (IFN)-γ-expressing and interleukin (IL)-17-expressing CD4 + T cells than healthy controls. The levels of IFN-γ and IL-17 expression by CD4 + T cells were significantly higher in AMD patients. These IFN-γ-expressing Th1 cells and IL-17-expressing Th17 cells could be selectively enriched by surface CCR3 + and CCR4 + CCR6 + expression, respectively. Th1 and Th17 cells from AMD patients promoted the differentiation of monocytes toward M1 macrophages, which were previously associated with retinal damage. Th1 and Th17 cells also increased the level of MHC class I expression in human retinal pigment epithelial (RPE)-1 cells, while Th1 cells increased the frequency of MHC class II-expressing RPE-1 cells. These proinflammatory effects were partly, but not entirely, induced by the secretion of IFN-γ and IL-17. Conclusions: This study demonstrated an enrichment of Th1 cells and Th17 cells in AMD patients. These Th1 and Th17 cells possessed proinflammatory roles in an IFN-γ-and IL-17-dependent fashion, and could potentially serve as therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.