The present work describes the first example of real-time noninvasive lactate sensing in human perspiration during exercise events using a flexible printed temporary-transfer tattoo electrochemical biosensor that conforms to the wearer's skin. The new skin-worn enzymatic biosensor exhibits chemical selectivity toward lactate with linearity up to 20 mM and demonstrates resiliency against continuous mechanical deformation expected from epidermal wear. The device was applied successfully to human subjects for real-time continuous monitoring of sweat lactate dynamics during prolonged cycling exercise. The resulting temporal lactate profiles reflect changes in the production of sweat lactate upon varying the exercise intensity. Such skin-worn metabolite biosensors could lead to useful insights into physical performance and overall physiological status, hence offering considerable promise for diverse sport, military, and biomedical applications.
We present a proof-of-concept demonstration of an all-printed temporary tattoo-based glucose sensor for noninvasive glycemic monitoring. The sensor represents the first example of an easy-to-wear flexible tattoo-based epidermal diagnostic device combining reverse iontophoretic extraction of interstitial glucose and an enzyme-based amperometric biosensor. In-vitro studies reveal the tattoo sensor's linear response toward physiologically relevant glucose levels with negligible interferences from common coexisting electroactive species. The iontophoretic-biosensing tattoo platform is reduced to practice by applying the device on human subjects and monitoring variations in glycemic levels due to food consumption. Correlation of the sensor response with that of a commercial glucose meter underscores the promise of the tattoo sensor to detect glucose levels in a noninvasive fashion. Control on-body experiments demonstrate the importance of the reverse iontophoresis operation and validate the sensor specificity. This preliminary investigation indicates that the tattoo-based iontophoresis-sensor platform holds considerable promise for efficient diabetes management and can be extended toward noninvasive monitoring of other physiologically relevant analytes present in the interstitial fluid.
This article presents the fabrication and characterization of novel tattoo-based solid-contact ion-selective electrodes (ISEs) for non-invasive potentiometric monitoring of epidermal pH levels. The new fabrication approach combines commercially available temporary transfer tattoo paper with conventional screen printing and solid-contact polymer ISE methodologies. The resulting tattoo-based potentiometric sensors exhibit rapid and sensitive response to a wide range of pH changes with no carry-over effects. Furthermore, the tattoo ISE sensors endure repetitive mechanical deformation, which is a key requirement of wearable and epidermal sensors. The flexible and conformal nature of the tattoo sensors enable them to be mounted on nearly any exposed skin surface for real-time pH monitoring of the human perspiration, as illustrated from the response during a strenuous physical activity. The resulting tattoo-based ISE sensors offer considerable promise as wearable potentiometric sensors suitable for diverse applications.
The present work describes the first example of a wearable salivary metabolite biosensor based on the integration of a printable enzymatic electrode on a mouthguard. The new mouthguard enzymatic biosensor, based on an immobilized lactate oxidase and a low potential detection of the peroxide product, exhibits high sensitivity, selectivity and stability using whole human saliva samples. Such non-invasive mouthguard metabolite biosensors could tender useful real-time information regarding a wearer's health, performance and stress level, and thus hold considerable promise for diverse biomedical and fitness applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.