Medical robots are invaluable players in non-pharmaceutical treatment of disabilities. Particularly, using prosthetic and rehabilitation devices with human-machine interfaces can greatly improve the quality of life for impaired patients. In recent years, flexible electronic interfaces and soft robotics have attracted tremendous attention in this field due to their high biocompatibility, functionality, conformability, and low-cost. Flexible human-machine interfaces on soft robotics would make a promising alternative to conventional rigid devices, which could potentially revolutionize the paradigm and future direction of medical robotics in terms of rehabilitation feedback and user experience. In this review, the fundamental components of the materials, structures, and mechanisms in flexible humanmachine interfaces are summarized by recent and renown applications in five primary areas: physical and chemical sensing, physiological recording, information processing and communication, soft robotic actuation, and feedback stimulation. This review further concludes by discussing the outlook and current challenges of these technologies as a human-machine interface in medical robotics.
Conventional industrial robots are unable to guarantee the inherent safety when working together with humans due to the use of rigid components and the lack of force sensation. To enhance the safety of humanrobot collaboration (HRC), the new collaborative robot skin (CoboSkin) with the features of softness, variable stiffness, and sensitivity is designed and studied in this article. The CoboSkin is composed of an array of inflatable units and sensing units. The sensing units made of soft porous materials are capable of measuring distributed contact force in a real-time manner. By leveraging the foaming process, the sensing units are interconnected with inflatable units fabricated by the elastomer of which the deformation is limited by the textile wrapped around it. Variation of stiffness is enabled by adjusting the internal air pressure supplied to inflatable units, thereby changing the sensitivity of the sensing units and reducing the peak impact force. Soft porous materials endowed the CoboSkin with increased sensitivity, minimal hysteresis, excellent cycling stability, and response time in the millisecond range, which enabled sensing feedback for controlling a robot arm at different levels of stiffness. Finally, the validation of the CoboSkin
Gait analysis is an important assessment tool for analyzing vital signals collected from individuals and for providing physical information of the human body, and it is emerging in a diverse range of application scenarios, such as disease diagnosis, fall prevention, rehabilitation, and human–robot interaction. Herein, a kind of surface processed conductive rubber was designed and investigated to develop a pressure-sensitive insole to monitor planar pressure in a real-time manner. Due to a novel surface processing method, the pressure sensor was characterized by stable contact resistance, simple manufacturing, and high mechanical durability. In the experiments, it was demonstrated that the developed pressure sensors were easily assembled with the inkjet-printed electrodes and a flexible substrate as a pressure-sensitive insole while maintaining good sensing performance. Moreover, resistive signals were wirelessly transmitted to computers in real time. By analyzing sampled resistive data combined with the gait information monitored by a visual-based reference system based on machine learning method (k-Nearest Neighbor algorithm), the corresponding relationship between plantar pressure distribution and lower limb joint angles was obtained. Finally, the experimental validation of the ability to accurately divide gait into several phases was conducted, illustrating the potential application of the developed device in healthcare and robotics.
Sweat, as a biofluid with the potential for noninvasive collection, provides profound insights into human health conditions, because it contains various chemicals and information to be utilized for the monitoring of well-being, stress levels, exercise, and nutrition. Recently, wearable sweat sensors have been developed as a promising substitute to conventional laboratory sweat detection methods. Such sensors are promising to realize low-cost, real-time, in situ sweat measurements, and provide great opportunities for health status evaluation analysis based on personalized big data. This review first presents an overview of wearable sweat sensors from the perspective of basic components, including materials and structures for specific sensing applications and modalities. Current strategies and specific methods of the fabrication of wearable power management are also summarized. Finally, current challenges and future directions of wearable sweat sensors are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.