The eco-toxicities of different crystalline phases of TiO 2 -NPs are controversial, and the effects and mechanisms on activated sludge are unclear. Therefore, we assessed the acute-toxicities (8-h exposure) of P25, anatase, and rutile TiO 2 -NPs in activated sludge using flow cytometry under simulated sunlight (hereafter-sun) and evaluated the relationship between sludge dewatering and bacterial cell death modes using Pearson's correlation coefficients (r). Additionally, the response of the microbial community structure was examined by high throughput sequencing. Bacterial survival and death were observed by confocal laser scanning microscopy. Toxicity indicators (e.g., lactate dehydrogenase (LDH) and reactive oxygen species (ROS)) were determined. Overall, TiO 2 -NPs toxicity was concentration-dependent and crystalline-phasedependent. The responses of bacterial communities to crystalline phases were more obvious than that of dosage. P25-sun and anatase-sun caused necrosis-like cell death via strong photo-oxidation confirmed by 131%/123% (1 mg/L) and 301%/ 254% (50 mg/L) LDH released by the control, while rutile-sun induced apoptosis-like death via intracellular ROS production increased to 165% (1 mg/L) and 420% (50 mg/L) of the control. P25 and anatase NPs had higher protein and polysaccharide affinities, while rutile NPs exhibited stronger attachment onto phospholipids. TiO 2 -NPs-sun reduced activated sludge dewaterability. Specific resistance to filtration (SRF) showed the strongest positive correlation with tightly bound extracellular polymeric substances (EPS) and total soluble microbial byproducts (r = 0.974, p < 0.01) and was closely related to EPS content and composition, especially the increased bound water (BW) content and sludge protein concentrations. High Pearson correlation coefficients were observed between early apoptotic cells and BW content (r = 0.952, p < 0.01) resulting from massive polysaccharides and between necrotic (including late apoptotic) cells and SRF (r = 0.959, p < 0.01) resulting from high protein and EPS concentrations. Thus, in response to TiO 2 -NPs, bacterial cell death modes differentially weakened sludge dewatering.
Artemisinin and its derivatives had played a biocidal role in biomedical remedies, while they were expected to enhance the activity of antibiotics against multiple drug-resistant (MDR) bacteria. The current study evaluated the interaction of artemisinin (ART), dihydroartemisinin (DHA), artesunate (AS), and artemisinic acid (AA) with β-lactam and fluoroquinolones antibiotics against Escherichia coli. Antibiotic strip test (E-test), Kirby Bauer's disc test (KB method), and broth microdilution method were adopted for susceptibility analysis, while the checkerboard method was applied to assess synergisms. ART, DHA, AS, and AA showed significantly enhanced antibacterial effects of β-lactam antibiotics against different strains of E. coli. The study showed ciprofloxacin to be most effective by presenting the least MIC (0.017125 ± 0.0022 μg/ml), while oxacillin was least effective (MIC 256 μg/ml) against E. coli. Synergism between AA and penicillin G (75%), ampicillin (25%), and oxacillin (50%) was observed in all isolates tested. AA and AS significantly decreased the MIC of ampicillin (−0.912 ± 0.908 μg/ml) and ciprofloxacin (−0.901 ± 0.893 g/ml), respectively. Artemisinin and its derivatives increased antibiotic accumulation within E. coli in a dose-dependent manner. The time-kill assay significantly reduced the bacterial number within 24 h of incubation. The study thus concludes greater room for improvement in enhancing the efficacy of antibiotics if used with artemisinin and its derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.