Mountainous vegetation type classification plays a fundamental role in resource investigation in forested areas, making it necessary to accurately identify mountain vegetation types. However, Mountainous vegetation growth is readily affected by terrain and climate, which often makes interpretation difficult. This study utilizes Sentinel-2A images and object-oriented machine learning methods to map vegetation types in the complex mountainous region of Jiuzhaigou County, China, incorporating multiple auxiliary features. The results showed that the inclusion of different features improved the accuracy of mountain vegetation type classification, with terrain features, vegetation indices, and spectral features providing significant benefits. After feature selection, the accuracy of mountain vegetation type classification was further improved. The random forest recursive feature elimination (RF_RFE) algorithm outperformed the RliefF algorithm in recognizing mountain vegetation types. Extreme learning machine (ELM), random forest (RF), rotation forest (ROF), and ROF_ELM algorithms all achieved good classification performance, with an overall accuracy greater than 84.62%. Comparing the mountain vegetation type distribution maps obtained using different classifiers, we found that classification algorithms with the same base classifier ensemble exhibited similar performance. Overall, the ROF algorithm performed the best, achieving an overall accuracy of 89.68%, an average accuracy of 88.48%, and a Kappa coefficient of 0.8789.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.