Pheromones are cell type-specific signals used for communication between individuals of the same species. When faced with overcrowding or starvation, Caenorhabditis elegans secrete the pheromone daumone, which facilitates communication between individuals for adaptation to adverse environmental stimuli. Daumone signals C. elegans to enter the dauer stage, an enduring and non-ageing stage of the nematode life cycle with distinctive adaptive features and extended life. Because daumone is a key regulator of chemosensory processes in development and ageing, the chemical identification of daumone is important for elucidating features of the daumone-mediated signalling pathway. Here we report the isolation of natural daumone from C. elegans by large-scale purification, as well as the total chemical synthesis of daumone. We present the stereospecific chemical structure of purified daumone, a fatty acid derivative. We demonstrate that both natural and chemically synthesized daumones equally induce dauer larva formation in C. elegans (N2 strain) and certain dauer mutants, and also result in competition between food and daumone. These results should help to elucidate the daumone-mediated signalling pathway, which might in turn influence ageing and obesity research and the development of antinematodal drugs.
USP7/HAUSP is a key regulator of p53 and Mdm2 and is targeted by the Epstein-Barr nuclear antigen 1 (EBNA1) protein of Epstein-Barr virus (EBV). We have determined the crystal structure of the p53 binding domain of USP7 alone and bound to an EBNA1 peptide. This domain is an eight-stranded beta sandwich similar to the TRAF-C domains of TNF-receptor associated factors, although the mode of peptide binding differs significantly from previously observed TRAF-peptide interactions in the sequence (DPGEGPS) and the conformation of the bound peptide. NMR chemical shift analyses of USP7 bound by EBNA1 and p53 indicated that p53 binds the same pocket as EBNA1 but makes less extensive contacts with USP7. Functional studies indicated that EBNA1 binding to USP7 can protect cells from apoptotic challenge by lowering p53 levels. The data provide a structural and conceptual framework for understanding how EBNA1 might contribute to the survival of Epstein-Barr virus-infected cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.