The aim of European water policy is to achieve good ecological status in all rivers, lakes, coastal and transitional waters by 2027. Currently, more than half of water bodies are in a degraded condition and nutrient enrichment is one of the main culprits. Therefore, there is a pressing need to establish reliable and comparable nutrient criteria that are consistent with good ecological status.This paper highlights the wide range of nutrient criteria currently in use by Member States of the European Union to support good ecological status and goes on to suggest that inappropriate criteria may be hindering the achievement of good status. Along with a comprehensive overview of nutrient criteria, we provide a critical analysis of the threshold concentrations and approaches by which these are set. We identify four essential issues: (1) Different nutrients (nitrogen and/or phosphorus) are used for different water categories in different countries. (2) The use of different nutrient fractions (total, dissolved inorganic) and statistical summary metrics (e.g., mean, percentiles, seasonal, annual) currently hampers comparability between countries, particularly for rivers, transitional and coastal waters. (3) Wide ranges in nutrient threshold values within shared water body types, in some cases showing more than a 10-fold difference in concentrations. (4) Different approaches used to set threshold nutrient concentrations to define the boundary between “good” and “moderate” ecological status. Expert judgement-based methods resulted in significantly higher (less stringent) good-moderate threshold values compared with data-driven approaches, highlighting the importance of consistent and rigorous approaches to criteria setting.We suggest that further development of nutrient criteria should be based on relationships between ecological status and nutrient concentrations, taking into account the need for comparability between different water categories, water body types within these categories, and countries.
a b s t r a c tA full re-calculation of Water Framework Directive reference and target concentrations for German coastal waters and the western Baltic Sea is presented, which includes a harmonization with HELCOM Baltic Sea Action Plan (BSAP) targets. Further, maximum allowable nutrient inputs (MAI) and target concentrations in rivers for the German Baltic catchments are suggested. For this purpose a spatially coupled, large scale and integrative modeling approach is used, which links the river basin flux model MONERIS to ERGOM-MOM, a three-dimensional ecosystem model of the Baltic Sea. The years around 1880 are considered as reference conditions reflecting a high ecological status and are reconstructed and simulated with the model system. Alternative approaches are briefly described, as well. For every WFD water body and the open sea, target concentrations for nitrogen and phosphorus compounds as well as chlorophyll a are provided by adding 50% to the reference concentrations. In general, the targets are less strict for coastal waters and slightly stricter for the sea (e.g. 1.2 mg/m³ chl.a summer average for the Bay of Mecklenburg), compared to current values. By taking into account the specifics of every water body, this approach overcomes the inconsistencies of earlier approaches. Our targets are well in agreement with the BSAP targets, but provide spatially refined and extended results. The full data are presented in Appendix A1 and A2.To reach the targets, German nitrogen inputs have to be reduced by 34%. Likely average maximum allowable concentrations in German Baltic rivers are between 2.6 and 3.1 mg N/l. However, the concrete value depends on the scenario and uncertainties with respect to atmospheric deposition. To our results, MAI according to the BSAP may be sufficient for the open sea, but are not sufficient to reach a good WFD status in German coastal waters.
To investigate how the perceptions and behaviour of visitors to coral reefs are influenced by their prior experience and knowledge of marine life, a questionnaire-based study was undertaken at sites in the Ras Mohammed National Park and at Sharm El Sheikh, South Sinai, Egypt. It was evident that over the 10-20 years during which these reefs have deteriorated (mainly due to reef-flat trampling), there have been interrelated shifts in the nature of visitors making use of them. First, there has been a shift from experienced divers and snorkellers to inexperienced snorkellers and non-snorkellers with a poorer knowledge of reef biology. Second, there has been a shift in the predominant nationalities of visitors, from German and British, through Italian, to Russian. More recent user groups both stated and showed that they had less experience of snorkelling; they also showed less knowledge of marine life and less interest in learning about it. Visitor perceptions of both the state of the marine life on the reefs and the acceptability of current visitor numbers also varied between groups. More recent visitor groups and visitors with less knowledge were more satisfied with reef health. In general, however, visitor perceptions of reef health did not correlate well with actual reef conditions, probably because more experienced visitors preferred less impacted sites with which they were nevertheless less satisfied than inexperienced visitors at heavily impacted sites. More recent visitor groups were also less bothered by crowding on the shore or in the water. Consequently, the apparent "social carrying capacity" of sites seems to be increasing to a level well above the likely "ecological carrying capacity".
ABSTRACT1. To monitor any impacts to coral reefs related to the exponential growth of tourism in the South Sinai region of the Egyptian Red Sea, nine stations were established at key reef sites over [2002][2003]. At each station coral cover was determined using a video survey method at depths of 3, 7 and 16 m, and fish abundance by underwater visual census at depths of 3 and 10 m.2. Mean total coral cover (hard plus soft) ranged from 58% to 23% at 3 m, 50% to 14% at 7 m, and 52% to 13% at 16 m, and hard coral cover from 37.5% to 15.7% at 3 m, 32.8% to 7.0% at 7 m, and 17.8% to 2.2% at 16 m. Analyses confirmed differences in coral assemblage related to depth and wave exposure.3. Fish abundances and assemblages also varied with depth and proximity of deep water. Also the one site subject to fishing had lower abundances of some commercial fish families and greater abundances of some herbivores.4. Transects subject to greater tourist use did not segregate from those subject to less tourist use, despite evidence from other work of an effect from visitor damage to corals at some sites. This may be because visitors were more attracted to sites that had higher coral cover.5. Comparison of the present data with that from past studies is difficult because of the differences in sites and method employed, but several observations suggest a moderate decline in coral cover during recent decades. Such a decline would be compatible with the recorded impact of an outbreak of crown-of-thorns starfish, Acanthaster planci, as well as with other evidence of accumulating damage by visitors.6. Further monitoring using the same stations and consistent protocols is urgently required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.