A significant relationship between age, CS and scatter was confirmed in our study. The results provide baseline values for the examination of patients with different diseases in which contrast sensitivity is impaired (such as glaucoma, cataracts and amblyopia) and might be useful in studies of roadworthiness or in investigation of the impact of intraocular lenses.
BackgroundConfocal laser endomicroscopy (CLE) is an optical biopsy method allowing in vivo microscopic imaging at 1000-fold magnification. It was the aim to evaluate CLE in the human oral cavity for the differentiation of physiological/carcinomatous mucosa and to establish and validate, for the first time, a scoring system to facilitate CLE assessment.MethodsThe study consisted of 4 phases: (1) CLE-imaging (in vivo) was performed after the intravenous injection of fluorescein in patients with histologically confirmed carcinomatous oral mucosa; (2) CLE-experts (n = 3) verified the applicability of CLE in the oral cavity for the differentiation between physiological and cancerous tissue compared to the gold standard of histopathological assessment; (3) based on specific patterns of tissue changes, CLE-experts (n = 3) developed a classification and scoring system (DOC-Score) to simplify the diagnosis of oral squamous cell carcinomas; (4) validation of the newly developed DOC-Score by non-CLE-experts (n = 3); final statistical evaluation of their classification performance (comparison to the results of CLE-experts and the histopathological analyses).ResultsExperts acquired and edited 45 sequences (260 s) of physiological and 50 sequences (518 s) of carcinomatous mucosa (total: 95 sequences/778 s). All sequences were evaluated independently by experts and non-experts (based on the newly proposed classification system). Sensitivity (0.953) and specificity (0.889) of the diagnoses by experts as well as sensitivity (0.973) and specificity (0.881) of the non-expert ratings correlated well with the results of the present gold standard of tissue histopathology. Experts had a positive predictive value (PPV) of 0.905 and a negative predictive value (NPV) of 0.945. Non-experts reached a PPV of 0.901 and a NPV of 0.967 with the help of the DOC-Score. Inter-rater reliability (Fleiss` kappa) was 0.73 for experts and 0.814 for non-experts. The intra-rater reliability (Cronbach’s alpha) of the experts was 0.989 and 0.884 for non-experts.ConclusionsCLE is a suitable and valid method for experts to diagnose oral cancer. Using the DOC-Score system, an accurate chair-side diagnosis of oral cancer is feasible with comparable results to the gold standard of histopathology—even in daily clinical practice for non-experienced raters.
Bruch's membrane opening-based minimum rim area measurements offer advantages compared to one-dimensional parameters assessing neuroretinal rim by SD-OCT. In nonglaucomatous eyes, BMO-MRA values seem comparable for the full range of disc sizes. Bruch's membrane opening-MRA surpasses other parameters in diagnostic power for glaucoma.
Combining multiple classifiers, known as ensemble methods, can give substantial improvement in prediction performance of learning algorithms especially in the presence of non-informative features in the data sets. We propose an ensemble of subset of kNN classifiers, ESkNN, for classification task in two steps. Firstly, we choose classifiers based upon their individual performance using the out-of-sample accuracy. The selected classifiers are then combined sequentially starting from the best model and assessed for collective performance on a validation data set. We use bench mark data sets with their original and some added non-informative features for the evaluation of our method. The results are compared with usual kNN, bagged kNN, random kNN, multiple feature subset method, random forest and support vector machines. Our experimental comparisons on benchmark classification problems and simulated data sets reveal that the proposed ensemble gives better classification performance than the usual kNN and its ensembles, and performs comparable to random forest and support vector machines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.