Application of reverse transcription-PCR to total RNA prepared from TNF-alpha (tumour necrosis factor-alpha)-stimulated HUVECs (human umbilical vein endothelial cells) revealed that the syndecan-2 mRNA was up-regulated by this inflammatory stimulus. By immunoprecipitation using an anti-syndecan-2 antibody on TNF-alpha-stimulated HUVEC lysates, inflammation-induced interleukin-8 was found to be an interaction partner of this HS (heparan sulphate) proteoglycan, but not of any other syndecan on these cells. The glycosylated [Syn2(ect)(+HS)] and non-glycosylated [Syn2(ect)(-HS)] forms of Syn2(ect) (the syndecan-2 ectodomain) were purified from a stably transfected human cell line and from a bacterial expression system respectively. By CD spectroscopy, Syn2(ect) was found to adopt an all-beta secondary structure. The dissociation constant of Syn2(ect)(+HS) with respect to interleukin-8 binding was determined by isothermal fluorescence titrations to be 23 nM. Despite its lack of HS chains, Syn2(ect)(-HS) exhibited significant binding to the chemokine, with a K (d) of >1 microM. Thus, in addition to glycosaminoglycan binding, protein-protein contacts might also contribute to the chemokine-proteoglycan interaction.
The filamentous cyanobacterium Anabaena PCC 7120 (now renamed Nostoc PCC 7120) possesses two genes for superoxide dismutase (SOD). One is an iron-containing (FeSOD) whereas the other is a manganese-containing superoxide dismutase (MnSOD). Localization experiments and analysis of the sequence showed that the FeSOD is cytosolic, whereas the MnSOD is a membranebound homodimeric protein containing one transmembrane helix, a spacer region, and a soluble catalytic domain. It is localized in both cytoplasmic and thylakoid membranes at the same extent with the catalytic domains positioned either in the periplasm or the thylakoid lumen. A phylogenetic analysis revealed that generally the highly homologous MnSODs of filamentous cyanobacteria are unique in being membrane-bound. Two recombinant variants of Anabaena MnSOD lacking either the hydrophobic region (MnSOD(⌬28)) or the hydrophobic and the linker region (MnSOD(⌬60)) are shown to exhibit the characteristic manganese peak at 480 nm, an almost 100% occupancy of manganese per subunit, a specific activity using the ferricytochrome assay of (660 ؎ 90) unit mg ؊1 protein and a dissociation constant for the inhibitor azide of (0.84 ؎ 0.05) mM. Using stopped-flow spectroscopy it is shown that the decay of superoxide in the presence of various (MnSOD(⌬28)) or (MnSOD(⌬60)) concentrations is first-order in enzyme concentration allowing the calculation of catalytic rate constants which increase with decreasing pH: 8 ؋ 10 6
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.