To explore their suitability for applications in molecular optoelectronics and as sensory materials, novel dithieno[3,2-b:2',3'-d]phospholes have been synthesized and their reactivity and properties investigated. An efficient two-step synthesis allowed for a modular assembly of differently functionalized compounds. The dithieno[3,2-b:2',3'-d]phosphole system exhibits extraordinary optoelectronic properties with respect to wavelength, intensity, and tunability. Owing to the nucleophilic nature of the central phosphorus atom, its significant electronic influence on the conjugated pi system can be altered selectively by chemically facile modifications such as oxidation or complexation with Lewis acids or transition metals. All the dithienophosphole species presented show very strong blue photoluminescence with excellent quantum yield efficiencies supporting their potential utility as blue-light emitting components in organic light emitting diodes (OLEDs). Furthermore, depending on the electronic nature of the phosphorus center, the materials exhibit distinctive optoelectronic properties suggesting that the dithieno[3,2-b:2',3'-d]phosphole system may be useful as sensory material. Theoretical calculations, including time-dependent DFT methods, revealed the excellent predictability of the structures and optoelectronic properties of the functionalized dithienophospholes allowing the design of future dithieno[3,2-b:2',3'-d]phosphole-based materials to be "stream-lined". By using tin-functionalized dithienophosphole monomers, a strategy, which involves Stille coupling, towards extended pi-conjugated materials with significantly redshifted optoelectronic properties is also presented.
A preparatively easy and efficient protocol for the resolution of racemic 2-aminocyclohexanol derivatives is described, delivering both enantiomers with >99% enantiomeric excess (ee) by sequential use of (R)- and (S)-mandelic acid. A simple aqueous workup procedure permits the isolation of the amino alcohols in analytically pure form and the almost quantitative recovery of mandelic acid. Debenzylation of enantiopure trans-2-(N-benzyl)amino-1-cyclohexanol by hydrogenation and subsequent derivatization give access to a broad variety of diversely substituted derivatives. Furthermore, the corresponding cis isomers are readily available. Applications of these optically active aminocyclohexanols in catalyzed asymmetric phenyl transfer reactions to benzaldehydes and transfer hydrogenations of aryl ketones lead to products with up to 96% ee.
Enantioselective syntheses O 0031Resolution of Racemic 2-Aminocyclohexanol Derivatives and Their Application as Ligands in Asymmetric Catalysis. -A number of chiral 2-aminocyclohexanols [cf. (I)-(IV)] is prepared via easy and efficient resolution. The derivatives (Ia) and (II) are found to be an effective ligand for the asymmetric phenylation of benzaldehydes. The amino alcohols (Ic) and (IIIa) efficiently promote stereoselective hydrogenation of aryl ketones. -(SCHIFFERS, I.; RANTANEN, T.; SCHMIDT, F.; BERGMANS, W.; ZANI, L.; BOLM*, C.; J. Org. Chem. 71 (2006) 6, 2320-2331; Inst. Org. Chem.,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.