Evolvability, designability, and plasticity of a protein are properties that are important to protein engineers, but difficult to quantify. Here, we directly compare homologous AroQ chorismate mutases from the thermophile Methanococcus jannaschii and the mesophile Escherichia coli with respect to their capacity to accommodate extensive mutation. The N-terminal helix comprising about 40% of these proteins was randomized at the genetic level using a binary pattern of hydrophobic and hydrophilic residues based on the respective wild-type sequences. Catalytically active library members were identified by a survival-selection assay in a chorismate mutase-deficient E. coli strain. Functional variants were found approximately approximately 10-times more frequently with the thermostable protein compared to its mesostable counterpart. Moreover, detailed sequence analysis revealed that functional M. jannaschii enzyme variants contained a smaller number of conserved residues and tolerated greater variability at individual sequence positions. Our results thus highlight the greater robustness of the thermostable protein with respect to amino acid substitution, while identifying specific sites important for constructing active enzymes. Overall, they support the notion that redesign projects will benefit from using a thermostable starting structure, even at very high mutational loads.
We present a fast computational method to efficiently screen enzyme activity. In the presented method, the effect of mutations on the barrier height of an enzyme-catalysed reaction can be computed within 24 hours on roughly 10 processors. The methodology is based on the PM6 and MOZYME methods as implemented in MOPAC2009, and is tested on the first step of the amide hydrolysis reaction catalyzed by the Candida Antarctica lipase B (CalB) enzyme. The barrier heights are estimated using adiabatic mapping and shown to give barrier heights to within 3 kcal/mol of B3LYP/6-31G(d)//RHF/3-21G results for a small model system. Relatively strict convergence criteria (0.5 kcal/(molÅ)), long NDDO cutoff distances within the MOZYME method (15 Å) and single point evaluations using conventional PM6 are needed for reliable results. The generation of mutant structures and subsequent setup of the semiempirical calculations are automated so that the effect on barrier heights can be estimated for hundreds of mutants in a matter of weeks using high performance computing.
Superfamily of alpha-beta hydrolases is one of the largest groups of structurally related enzymes with diverse catalytic functions. Bioinformatic analysis was used to study how lipase and amidase catalytic activities are implemented into the same structural framework. Subfamily-specific positions--conserved within lipases and peptidases but different between them--that were supposed to be responsible for functional discrimination have been identified. Mutations at subfamily-specific positions were used to introduce amidase activity into Candida antarctica lipase B (CALB). Molecular modeling was implemented to evaluate influence of selected residues on binding and catalytic conversion of amide substrate by corresponding library of mutants. In silico screening was applied to select reactive enzyme-substrate complexes that satisfy knowledge-based criteria of amidase catalytic activity. Selected CALB variants with substitutions at subfamily-specific positions Gly39, Thr103, Trp104, and Leu278 were produced and showed significant improvement of experimentally measured amidase activity. Based on these results, we suggest that value of subfamily-specific positions should be further explored in order to develop a systematic tool to study structure-function relationship in enzymes and to use this information for rational enzyme engineering.
By using rational design an amidase‐like hydrogen bond (indicated by the arrow) was introduced into the transition states of Candida antarctica lipase B and Humicola insolens cutinase. The best mutant displayed a 50‐fold increase in amide over ester bond hydrolysis compared to the wild type.
The enzymatic degradation of plant polysaccharides is emerging as one of the key environmental goals of the early 21st century, impacting on many processes in the textile and detergent industries as well as biomass conversion to biofuels. One of the well known problems with the use of nonstarch (nonfood)-based substrates such as the plant cell wall is that the cellulose fibers are embedded in a network of diverse polysaccharides, including xyloglucan, that renders access difficult. There is therefore increasing interest in the “accessory enzymes,” including xyloglucanases, that may aid biomass degradation through removal of “hemicellulose” polysaccharides. Here, we report the biochemical characterization of the endo-β-1,4-(xylo)glucan hydrolase from Paenibacillus polymyxa with polymeric, oligomeric, and defined chromogenic aryl-oligosaccharide substrates. The enzyme displays an unusual specificity on defined xyloglucan oligosaccharides, cleaving the XXXG-XXXG repeat into XXX and GXXXG. Kinetic analysis on defined oligosaccharides and on aryl-glycosides suggests that both the −4 and +1 subsites show discrimination against xylose-appended glucosides. The three-dimensional structures of PpXG44 have been solved both in apo-form and as a series of ligand complexes that map the −3 to −1 and +1 to +5 subsites of the extended ligand binding cleft. Complex structures are consistent with partial intolerance of xylosides in the −4′ subsites. The atypical specificity of PpXG44 may thus find use in industrial processes involving xyloglucan degradation, such as biomass conversion, or in the emerging exciting applications of defined xyloglucans in food, pharmaceuticals, and cellulose fiber modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.