The wind power density (WPD) distribution curve is essential for wind power assessment and wind turbine engineering. The usual practice of estimating this curve from wind speed data is to first estimate the wind speed probability density function (PDF) using a nonparametric or parametric method. The density function is then multiplied by one-half the wind speed cubed times the air density. Unfortunately, this means that minor errors in the estimation of the wind speed PDF can result in large errors in the WPD distribution curve because the cubic term in the WPD function magnifies the error. To avoid this problem, this paper presents a new method of estimating the WPD distribution curve through a direct estimation of the curve using a Gauss-Hermite expansion. It is demonstrated that the proposed method provides a much more reliable estimate of the WPD distribution curve.
Meteorological models need to be compared to long-term, routinely collected meteorological data. Whenever numerical forecast models are validated and compared, verification winds are normally interpolated to individual model grid points. To be statistically significant, differences between model and verification data must exceed the uncertainty of verification winds due to instrument error, sampling, and interpolation. This paper will describe an approach to examine the uncertainty of interpolated boundary layer winds and illustrate its practical effects on model validation and intercomparison efforts. This effort is part of a joint model validation project undertaken by the Environmental Verification and Analysis Center at the University of Oklahoma (http://www.evac.ou.edu) and the Battlefield Environment Directorate of the Army Research Laboratory. The main result of this study is to illustrate that it is crucial to recognize the errors inherent in gridding verification winds when conducting model validation and intercomparison work. Defendable model intercomparison results may rely on proper scheduling of model tests with regard to seasonal wind climatology and choosing instrument networks and variogram functions capable of providing adequately small errors due to sampling and imperfect modeling. Thus, it is important to quantify verification wind uncertainty when stating forecast errors or differences in the accuracy of forecast models.
To provide an analysis tool for areal rainfall estimates, 1° gridded monthly sea level rainfall estimates have been derived from historical atoll rainfall observations contained in the Pacific Rainfall (PACRAIN) database. The PACRAIN database is a searchable repository of in situ rainfall observations initiated and maintained by the University of Oklahoma and supported by a research grant from the National Oceanic and Atmospheric Administration (NOAA)/Climate Program Office/Ocean Observing and Monitoring. The gridding algorithm employs ordinary kriging, a standard geostatistical technique, and selects for nonnegative estimates and for local estimation neighborhoods yielding minimum kriging variance. This methodology facilitates the selection of fixed-size neighborhoods from available stations beyond simply choosing the closest stations, as it accounts for dependence between estimator stations. The number of stations used for estimation is based on bias and standard error exhibited under cross estimation. A cross validation is conducted, comparing estimated and observed rains, as well as theoretical and observed standard errors for the ordinary kriging estimator. The conditional bias of the kriging estimator and the predictive value of kriging standard errors, with respect to observed standard errors, are discussed. Plots of the gridded rainfall estimates are given for sample El Niño and La Niña cases and standardized differences between the estimates produced here and the merged monthly rainfall estimates published by the Global Precipitation Climatology Project (GPCP) are shown and discussed.
Daily rainfall accumulation estimates have been derived from 1-min volume data collected via self-syphon rain gauges deployed in the Tropical Atmosphere–Ocean (TAO) array of oceanographic buoys. The underlying high-resolution volume data were obtained directly from the Global Tropical Moored Buoy Array (GTMBA) Project Office of NOAA/Pacific Marine Environmental Laboratory. The derived accumulations have been incorporated into the Pacific Rainfall (PACRAIN) database as estimated daily values to augment existing sea level oceanic rainfall records gathered using traditional rain gauges. They have also been included in the PACRAIN historical, monthly gridded rainfall product. The methodology presented, which employs differencing of least squares–regressed sensor levels about 0000 UTC and rain gauge syphon events, is shown to offer improved error characteristics over the methodology used to compute previously published GTMBA rain rates. In particular, the PACRAIN method yields larger coefficients of determination and smaller standard errors than the duplicated GTMBA method when applied to synthetic rainfall data with noise magnitude and decorrelation times encompassing those observed in the real 1-min data. These results are shown to be consistent with mathematical expectations. Sources of instrument and catchment errors, as well as evaporation, are discussed in the context of their potential effects on accumulation estimates for periods of a day or longer. Significance Statement In this paper, we describe the derivation of daily rainfall amounts from raw rain gauge data obtained from buoy-mounted rain gauges. These new accumulation estimates expand the store of rainfall estimates from locations approximating the open-ocean conditions of the tropical Pacific Ocean. The derivation technique we describe exhibits better performance than the method used to generate previously published estimates using the same dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.