A novel electrochemiluminescence (ECL) detector is presented in this article. The detector is applied for micellar electrokinetic chromatographic separation of dichlorotris(2,2'-bipyridyl)ruthenium(II) hydrate [Ru-(bpy)] and dichlorotris(1,10-phenanthroline)ruthenium-(II) hydrate [Ru(phen)] on a microfabricated glass device. It consists of a microfabricated "U"-shape floating platinum electrode placed across the separation channel. The legs of the U function respectively as working and counter electrode. The required potential difference for the ECL reaction is generated at the Pt electrode by the electric field available in the separation channel during electrophoretic separation. Initial experiments demonstrate a micellar electrokinetic separation and direct ECL detection of 10(-16) mol of Ru(phen) (10(-6) M) and 4.5 x 10(-16) mol of Ru(bpy) (5 x 10(-6) M). Also, preliminary results show the indirect detection of three amino acids. The high voltage at the location of detection does not interfere with the electrochemistry.
We thank GEC pic and the Fellowship of Engineering for the award of a Senior Fellowship in Molecular and Biomolecular Electronics and the SERC for support under Grant GR/F 16424. We also acknowledge the award to C.D. by the Fellowship of Eng/GEC of a Kiethley 617 electrometer and microcomputer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.