Scale-up from shake flasks to fermenters has been hampered by the lack of knowledge concerning the influence of operating conditions on mass transfer, hydromechanics, and power input. However, in recent years the properties of shake flasks have been described with empirical models. A practical scale-up strategy for everyday use is introduced for the scale-up of aerobic cultures from shake flasks to fermenters in batch and continuous mode. The strategy is based on empirical correlations of the volumetric mass transfer coefficient (k(L) a) and the pH. The accuracy of the empirical k(L) a correlations and the assumptions required to use these correlations for an arbitrary biological medium are discussed. To determine the optimal pH of the culture medium a simple laboratory method based on titration curves of the medium and a mechanistic pH model, which is solely based on the medium composition, is applied. The effectiveness of the scale-up strategy is demonstrated by comparing the behavior of Corynebacterium glutamicum on lactic acid in shake flasks and fermenters in batch and continuous mode. The maximum growth rate (micro(max) = 0.32 h(-1)) and the oxygen substrate coefficient (Y O2 /S= 0.0174 mol/l) of C. glutamicum on lactic acid were equal for shake flask, fermenter, batch, and continuous cultures. The biomass substrate yield was independent of the scale, but was lower in batch cultures (Y(X/S) = 0.36 g/g) than in continuous cultures (Y(X/S) = 0.45 g/g). The experimental data (biomass, respiration, pH) could be described with a simple biological model combined with a mechanistic pH model.
For the prediction and optimisation of the equilibrium conversion in biphasic catalysed reactions, the equilibrium constant of the desired reaction and the partition coefficients of all reactants have to be known. Within this contribution we have examined the alcohol dehydrogenase-catalysed reduction of several linear and aromatic ketones in biphasic reaction media with respect to equilibrium conversion. In this example, the equilibrium constant can be expressed in terms of differences in oxidation-reduction potentials DE 0 . However, for a large variety of organic compounds, these data are quite rare in the literature. To overcome this lack of data, we have utilised methods of computational chemistry to calculate data for the Gibbs free energy DG R leading to the equilibrium constants of a homologous series of linear ketones. To obtain comparable data for the reduction of substituted acetophenone derivatives, the Hammett relation leads to the necessary equilibrium constants. Furthermore, we compare the equilibrium conversions of a set of cofactor regeneration methods for the alcohol dehydrogenase-catalysed reductions. These results lead to a time-saving experimental design for the enantioselective reduction of 2-octanone to (R)-2-octanol on a preparative scale utilising biphasic reaction conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.