Permanent WRAP URL:http://wrap.warwick.ac.uk/88751 Copyright and reuse:The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.Copies of full items can be used for personal research or study, educational, or not-for profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.Publisher's statement: © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. A note on versions:The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP url' above for details on accessing the published version and note that access may require a subscription. Abstract-In this work, we investigate diffusion-based molecular communication between two mobile nano-machines. We derive a closed-form expression for the first hitting time distribution, by characterizing the motion of the information particles and the nano-machines via Brownian motion. We validate the derived expression through a particle-based simulation. For the information transfer we consider single particles of different types, where transposition errors are the dominant source of errors. We derive an analytical expression for the expected bit error probability and evaluate the error performance for the static and the mobile case by means of computer simulations.
Collecting sensor data in industrial environments from up to some tenth of battery-powered sensor nodes with sampling rates up to 100 Hz requires energy-aware protocols, which avoid collisions and long listening phases. The IEEE 802.15.4 standard focuses on energy-aware wireless sensor networks (WSNs) and the Task Group 4e has published an amendment to fulfill up to 100 sensor value transmissions per second per sensor node (low latency deterministic network (LLDN) mode) to satisfy demands of factory automation. To improve the reliability of the data collection in the star topology of the LLDN mode, we propose a relay strategy, which can be performed within the LLDN schedule. Furthermore, we propose an extension of the star topology to collect data from two-hop sensor nodes. The proposed retransmission mode enables power savings in the sensor node of more than 33%, while reducing the packet loss by up to 40%. To reach this performance, an optimum spatial distribution is necessary, which is discussed in detail.
In this paper, we consider a bit-interleaved coded spatial multiplexing MIMO communication system over a frequency-selective MIMO channel. We present a factor-graphbased derivation of two different equalization algorithms. To this end, we propose a cycle-free factor graph representation of the equalizer, to which we apply the sum-product algorithm (SPA). By using different message representations in the SPA, the resulting equalization algorithms correspond to the optimal MAP equalizer and the low-complexity LMMSE equalizer, respectively. Both algorithms are soft-input soft-output equalization algorithms and can be used in turbo processing. We demonstrate that after 3 iterations the BER performance of the LMMSE equalizer is similar to that of the MAP equalizer.
Motivated by the numerous healthcare applications of molecular communication within Internet of Bio-Nano Things (IoBNT), this work addresses the problem of abnormality detection in a blood vessel using multiple biological embedded computing devices called cooperative biological nanomachines (CNs), and a common receiver called the fusion center (FC). Due to blood flow inside a vessel, each CN and the FC are assumed to be mobile. In this work, each of the CNs perform abnormality detection with certain probabilities of detection and false alarm by counting the number of molecules received from a source, e.g., infected tissue. These CNs subsequently report their local decisions to a FC over a diffusion-advection blood flow channel using different types of molecules in the presence of inter-symbol interference, multi-source interference, and counting errors. Due to limited computational capability at the FC, OR and AND logic based fusion rules are employed to make the final decision after obtaining each local decision based on the optimal likelihood ratio test. For the aforementioned system, probabilities of detection and false alarm at the FC are derived for OR and AND fusion rules. Finally, simulation results are presented to validate the derived analytical results, which provide important insights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.