The main component of this program is a simultaneous representation of the unit cell and the calculated powder pattern. It allows the manipulation of the crystal structure by moving selected atoms of the asymmetric unit. The resulting powder pattern can be directly compared to experimental data in order to obtain reliable starting values for further computations in refinement programs.
The development of a large-area RF source for negative hydrogen ions, an official EFDA task agreement, is aiming at demonstrating ITER-relevant ion source parameters. This implies a current density of 20 mA/cm 2 accelerated Dions at a source filling pressure of ≤ 0.3 Pa and an electron to ion ratio of ≤ 1 from a PINI-size extraction area for pulse lengths of up to 1 hour. The work is progressing along three lines in parallel: (i) optimisation of current densities at low pressure and electron/ion ratio, utilising small extraction areas (< 100 cm 2) and short pulses (< 10 s); (ii); investigation of extended extraction areas (< 300 cm 2) and pulse lengths of up to 3600 s; (iii) investigation of a size-scaling on a half-size ITER plasma source. Three different testbeds are being used to carry out those investigations in parallel. An extensive diagnostic and modelling programme accompanies the activities. The paper contains the recent achievements and the status of preparations in those four areas of development
Development of negative hydrogen ion sources for neutral beam systems is closely linked with an optimisation of negative ion formation in hydrogen plasmas which requires knowledge of the plasma parameters. Emission spectroscopy is introduced as a non-invasive and in-situ diagnostic tool for line of sight averaged plasma parameters. Diagnostic lines and simplified analysis methods for a variety of plasma parameters, such as electron density and electron temperature, gas temperature, atomic and molecular hydrogen density as well as cesium densities (atoms and ions) and negative ion densities are identified and prepared for direct application. Emphasis is laid on results obtained in RF generated negative ion sources. Correlations of plasma parameters with extracted negative ion current densities are discussed. Stripping losses in the extraction system are quantified by using beam emission spectroscopy.
The preparation and use of bispidine derivatives (3,7-diazabicyclo[3.3.1]nonane) as chelate ligands for radioactive copper isotopes for diagnosis (64Cu) or therapy (67Cu) are reported. Starting from the hexadentate bispidine-based bis(amine)tetrakis(pyridine) ligand 1 with a keto and two ester substituents, the corresponding mono-ol 2 and two dicarboxylic acid derivatives 3 and 5 have been synthesized. A range of techniques, including single-crystal X-ray structure analysis, UV/vis spectroscopy, cyclic voltammetry, thin-layer- (TLC), and high-performance liquid chromatography (HPLC), have been used to characterize the structure and stability of the copper(II)-bispidine complexes. A rapid formation (within 1 min) of stable copper(II)-bispidine complexes under mild conditions (ambient temperature, aqueous solution) has been observed. Challenge experiments of these complexes in the presence of a high excess of competing ligands, such as glutathione, cyclam, or superoxide dismutase (SOD), as well as in rat plasma, gave no evidence of demetalation or transchelation. The bifunctional bispidine derivative 5 can be readily functionalized with biologically active molecules at the pendant carboxylate groups. The coupling of a bombesin analogue betahomo-Glu-betaAla-betaAla-[Cha(13),Nle(14)]BBN(7-14), by condensation of a carboxylate of the bispidine backbone with the N-terminus of the peptide produced the bifunctional ligand 6. The radiocopper(II) complex of this bombesin-bispidine conjugate has a considerable hydrophilicity (log D(o/w) < -2.4), and this leads to a very fast blood clearance (blood: 0.28 +/- 0.02 SUV, 1 h p.i.), low liver tissue accumulation (liver: 1.20 +/- 0.27 SUV, 1 h p.i.), and rapid renal-urinary excretion (kidneys: 6.06 +/- 2.96 SUV, 1 h p.i.) as shown by biodistribution studies of 64Cu-6 in Wistar rats. Preliminary in vivo studies of 64Cu-6 in NMRI nu/nu mice, bearing the human prostate tumor PC-3 showed an accumulation of the conjugate in the tumor (2.25 +/- 0.13 SUV, 12.5 min p.i.; 0.94 +/- 0.05 SUV, 55 min p.i.) and allowed a clear visualization of the gastrin-releasing peptide receptor distribution by positron emission tomography (PET).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.