TFF3 is a secretory peptide belonging to the trefoil factor family with a predicted size of 59 amino acid residues containing seven cysteine residues. It is predominantly expressed in intestinal goblet cells where it plays a key role in mucosal regeneration and repair processes. In the course of these studies, human colonic TFF3 was shown to exist mainly as a high molecular weight heteromer. Purification of this heteromer and characterization by LC-ESI-MS/MS analysis identified the IgG Fc binding protein (FCGBP) as the disulfide-linked partner protein of TFF3. FCGBP is a constituent of intestinal mucus secreted by goblet cells. Furthermore, low amounts of TFF3/monomer and only little TFF3/dimer were detected in human colonic extracts. Here, we show that these TFF3 forms can be released from the purified TFF3-FCGBP heteromer complex in vitro by reduction with hydrogen sulfide (H(2)S). Such a mechanism would be in line with the high H(2)S concentrations reported to occur in the lumen of the colon. Of special note, this points to intestinal mucus as a reservoir for a biologically active peptide. Also proteolytic processing of FCGBP was observed which is in line with multiple autocatalytic cleavages as proposed earlier by Johansson et al. (J. Proteome Res. 2009 , 8 , 3549 - 3557).
The ATP synthase (F1F0) of Propionigenium modestum has been purified to a specific ATPase activity of 5.5 units/mg of protein, which is about 6 times higher than that of the bacterial membranes. Analysis by SDS gel electrophoresis indicated that in addition to the five subunits of the F1 ATPase, subunits of Mr 26,000 (a), 23,000 (b), and 7500 (c) have been purified. The ATPase activity of F1F0 was specifically activated about 10-fold by Na+ions. The enzyme was strongly inhibited by dicyclohexylcarbodiimide, venturicidin, tributyltin chloride, and azide. After incubation with [14C]dicyclohexylcarbodiimide, about 3-4 mol of the inhibitor was bound per 500,000 g of the enzyme. The radioactive label was specifically bound to submit c. These subunits form stable aggregates which resist dissociation by SDS at 100 degrees C. The monomer is formed upon heating with SDS to 121 degrees C or by extraction of the membranes with chloroform/methanol. The ATP synthase was incorporated into liposomes by a freeze-thaw-sonication procedure. The reconstituted proteoliposomes catalyzed the transport of Na+ions upon ATP hydrolysis. The transport was completely abolished by dicyclohexylcarbodiimide. Whereas monensin prevented the accumulation of Na+ions, the uptake rate was stimulated 4-5-fold in the presence of valinomycin or carbonyl cyanide m=chlorophenylhydrazone. These results indicate an electrogenic Na+ transport and also that it is a primary event and not accomplished by a H+-translocating ATP synthase in combination with a Na+/H+ antiporter.
Gastrokine-2 (GKN2) is a secretory peptide of human gastric surface mucous cells (SMCs). It forms disulfide-linked heterodimers with the trefoil factor family (TFF) peptide TFF1. Binding with TFF2 was also reported. Antral SMCs differ from those of the corpus by their TFF3 expression. The aim of this study was to localize GKN2 expression along the antral gland axis, to characterize the continuous regeneration of antral glands, and to investigate the interactions of GKN2 with TFF1, TFF2 and mucins. Methods: The spatial expression of GKN1, GKN2, TFF1-3, MUC5AC and MUC6 was determined using laser microdissection and RT-PCR analysis. Furthermore, antral extracts were separated by gel chromatography and the association of GKN2 with TFF1, TFF2, and mucins was investigated. Results: Differential GKN2 expression was localized along the rostro-caudal axis of the stomach. Laser microdissection revealed characteristic differential expression profiles of GKN1, GKN2, TFF1-3, MUC5AC and MUC6 along the antral gland axis. Both GKN2 and TFF1 were expressed in superficial SMCs. Surprisingly, the TFF1-GKN2 heterodimer did not associate with the mucin fraction; whereas TFF2 showed exclusive association with mucins. Conclusions: Maturation of antral SMCs occurs stepwise via trans-differentiation of TFF3 expressing progenitor cells. The TFF1-GKN2 heterodimer and TFF2 differ characteristically by their binding to gastric mucins. This points to different physiological functions of TFF1 and TFF2, the latter maybe acting as a “link peptide” for stabilization of the gastric mucus.
The ATP‐hydrolyzing activity of Propionigenium modestum was extracted from the membranes with Triton X‐100 or by incubation with EDTA at low ionic strength. The ATPase in the Triton extract was highly sensitive to dicyclohexylcarbodiimide but not to vanadate. These properties are characteristic for enzymes of the F1F0 type. The ATPase was specifically activated by Na+ ions yielding a 15‐fold increase in catalytic activity at 5 mM Na+ concentration. The additional presence of 1% Triton X‐100 caused a further 1.5–fold activation. In the absence of Na+ Triton stimulated the ATPase about 13‐fold. The Triton‐stimulated ATPase was further activated about 1.5–2‐fold by Na+ addition. The ATPase extracted by the low‐ionic‐strength treatment was purified to homogeneity by fractionation with poly(ethylene glycol) and gel chromatography. The enzyme had the characteristic F1‐ATPase subunit structure with Mr values of 58000 (α), 56000 (β), 37600 (γ), 22700 (δ), and 14000 (ɛ). The F1‐ATPase was not stimulated by Na+ ions. The membrane‐bound ATPase was reconstituted from the purified F1 part and F1‐depleted membranes, thus further indicating an F1F0 structure for the ATPase of P. modestum. Upon reconstitution the ATPase recovered its stimulation by Na+ ions, suggesting that the binding site for Na+ is localized on the membrane‐bound F0 part of the enzyme complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.