Recent studies of rat and human calcitonin (CT) gene expression have uncovered a diversity of secretory peptides. Here we report the results of testing two such non-CT secretory peptides for CT-like action in live rats and in cultured fetal rat long bone. One peptide, the carboxyl-terminal CT-adjacent peptide that is cosynthesized with CT, has no hypocalcemic effect and no inhibitory action on bone resorption in vitro. The other peptide, CT gene-related peptide, lowers blood calcium and inhibits bone resorption. In vitro experiments are consistent with the idea that CT gene-related peptide is acting at CT receptors in bone.
We have previously shown that recombinant interleukin 1 (IL-1) and recombinant tumour necrosis factor (TNF) synergistically stimulate phospholipase A2 release from mesangial cells. We now report that treatment of mesangial cells with the beta-agonist salbutamol, prostaglandin E2 (PGE2), cholera toxin or forskolin, which all activate adenylate cyclase, increased release of phospholipase A2 activity. Likewise, addition of a membrane-permeant cyclic AMP (cAMP) analogue or the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine enhanced release of phospholipase A2 activity from mesangial cells. There was a lag period of about 8 h before a significantly enhanced secretion could be detected. Furthermore, actinomycin D or cycloheximide completely suppressed cAMP-stimulated secretion of phospholipase A2. Angiotensin II, the phorbol ester phorbol 12-myristate 13-acetate, the Ca2+ ionophore A23187 and a membrane-permeant cGMP analogue did not stimulate phospholipase A2 release from the cells. Treatment with indomethacin completely inhibited IL-1 beta- and TNF-stimulated PGE2 synthesis, without having any effect on phospholipase A2 secretion, thus excluding cytokine-induced PGE2 synthesis as the mediator of phospholipase A2 release. Neither IL-1 beta nor TNF induced any increase in intracellular cAMP in mesangial cells. Furthermore, incubation of the cells with 2',5'-dideoxyadenosine, an inhibitor of adenylate cyclase, did not block cytokine-stimulated phospholipase A2 secretion. In addition, IL-1 beta and TNF synergistically interacted with forskolin to stimulate phospholipase A2 release from the cells. The protein kinase inhibitors H-8, staurosporine, K252a and amiloride inhibited IL-1 beta- and TNF-stimulated phospholipase A2 secretion. However, high concentrations that inhibit other protein kinases were needed. These observations suggest that IL-1 beta and TNF cause secretion of phospholipase A2 by a mechanism independent of cAMP. The signalling pathways used by IL-1 beta and TNF may involve a protein kinase that is probably different from protein kinase A or protein kinase C.
Treatment of rat glomerular mesangial cells with transforming growth factor beta 2 (TGF beta 2) stimulates prostaglandin E2 (PGE2) synthesis. Actinomycin D, cycloheximide and diclofenac attenuate the TGF beta 2-induced PGE2 formation. As shown previously, two proinflammatory cytokines, interleukin 1 beta (IL-1 beta) and tumour necrosis factor alpha (TNF alpha), are potent stimuli for PGE2 and phospholipase A2 secretion from mesangial cells. We report here that, whereas TGF beta 2 potentiates the IL-1 β- and TNF alpha-evoked PGE2 production, it strongly inhibits the phospholipase A2 secretion induced by both cytokines. In addition, the inhibitory effect of TGF beta 2 on phospholipase A2 secretion is not due to the augmented PGE2 formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.