A general method for the quantification of proteins in human serum was developed using mass spectrometry (MS) and stable isotope-labeled synthetic peptides as internal standards. Using this approach, C-reactive protein (CRP), a diagnostic marker of rheumatoid arthritis (RA), was detected in serum samples taken from patients with either erosive or nonerosive RA and compared to healthy individuals. Small volumes of serum samples were enriched for low-abundance proteins through the selective removal of human serum albumin (HSA), immunoglobulin G (IgG), and haptoglobin. After depletion of abundant proteins, the complexity of the protein mixture was further simplified using size exclusion chromatography (SEC) to fractionate denatured proteins into discrete molecular weight ranges. Fractions of interest containing CRP, M(r) = 25 000, were pooled, digested with trypsin, and then fixed quantities of the synthetic peptides were added to the mixture. The mixture of tryptic peptides was subsequently analyzed by nanoflow chromatography-tandem MS (nanoLC-MS/MS) using multiple-reaction monitoring (MRM) on a triple quadrupole mass spectrometer (TQ-MS). The ratio of transition ions derived from the endogenous and isotope-labeled peptides provided a quantitative measure of CRP in the original samples as assessed by independent measurement of CRP in the same patient samples using an immunoassay. The use of isotope-labeled synthetic peptides and MRM is a powerful analytical method for the prescreening of candidate protein biomarkers in human serum prior to antibody and immunoassay development.
Objective. To identify a panel of candidate protein biomarkers of rheumatoid arthritis (RA) that can predict which patients will develop erosive, disabling disease.Methods. A 2-step proteomic approach was used for biomarker discovery and verification. In the first step, 2-dimensional liquid chromatography-coupled tandem mass spectrometry was used to generate protein profiles of synovial fluid (SF) from patients with either erosive RA (n ؍ 5) or nonerosive RA (n ؍ 5). In the second step, the selected candidate markers were verified using quantitative multiple reaction monitoring mass spectrometry in sera of patients with erosive RA (n ؍ 15) or nonerosive RA (n ؍ 15) and of healthy controls (n ؍ 15).Results. Through differential profiling of proteins in the <40-kd portion of the SF proteome, we selected 33 prospective candidate biomarkers from a total of 418 identified proteins. Among the proteins that were elevated in the SF of patients with erosive RA were C-reactive protein (CRP) and 6 members of the S100 protein family of calcium-binding proteins. Significantly, levels of CRP, S100A8 (calgranulin A), S100A9 (calgranulin B), and S100A12 (calgranulin C) proteins were also elevated in the serum of patients with erosive disease compared with patients with nonerosive RA or healthy individuals.Conclusion. Several potential protein marker candidates have been identified for prognosis of the erosive form of RA. This study demonstrates the facility of using protein mass spectrometry in SF and serum for global discovery and verification of clinically relevant sets of disease biomarkers.
The purpose of this study was to identify and validate novel serological protein biomarkers of human colorectal cancer (CRC).The PSME3-containing spot on tumor gels showed no visible difference to the corresponding spot on matched control gels. MS analysis revealed the presence of two proteins, PSME3 and annexin 4 (ANXA4) in one and the same spot on tumor gels, whereas the matched spot contained only one protein, ANXA4, on control gels. Therefore, dysregulation of PSME3 was masked by ANXA4 and could only be recognized by MS-based analysis but not by image analysis. To validate this finding, antibody to PSME3 was developed, and up-regulation in CRC was confirmed by Western blot analysis and immunohistochemistry. Finally by developing a highly sensitive immunoassay, PSME3 could be detected in human sera and was significantly elevated in CRC patients compared with healthy donors and patients with benign bowel disease. We propose that PSME3 be considered a novel serum tumor marker for CRC that may have significance in the detection and in the management of patients with this disease. Further studies are needed to fully assess the potential clinical value of this marker candidate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.