The sudden outbreak and uncontrolled spread of COVID-19 disease is one of the most important global problems today. In a short period of time, it has led to the development of many deep neural network models for COVID-19 detection with modules for explainability. In this work, we carry out a systematic analysis of various aspects of proposed models. Our analysis revealed numerous mistakes made at different stages of data acquisition, model development, and explanation construction. In this work, we overview the approaches proposed in the surveyed Machine Learning articles and indicate typical errors emerging from the lack of deep understanding of the radiography domain. We present the perspective of both: experts in the field - radiologists and deep learning engineers dealing with model explanations. The final result is a proposed checklist with the minimum conditions to be met by a reliable COVID-19 diagnostic model.
The increased interest in deep learning applications, and their hard-to-detect biases result in the need to validate and explain complex models. However, current explanation methods are limited as far as both the explanation of the reasoning process and prediction results are concerned. They usually only show the location in the image that was important for model prediction. The lack of possibility to interact with explanations makes it difficult to verify and understand exactly how the model works. This creates a significant risk when using the model. The risk is compounded by the fact that explanations do not take into account the semantic meaning of the explained objects. To escape from the trap of static and meaningless explanations, we propose a tool and a process called LIMEcraft. LIMEcraft enhances the process of explanation by allowing a user to interactively select semantically consistent areas and thoroughly examine the prediction for the image instance in case of many image features. Experiments on several models show that our tool improves model safety by inspecting model fairness for image pieces that may indicate model bias. The code is available at: http://github.com/MI2DataLab/LIMEcraft.
The increased interest in deep learning applications, and their hard-to-detect biases result in the need to validate and explain complex models. However, current explanation methods are limited as far as both the explanation of the reasoning process and prediction results are concerned. They usually only show the location in the image that was important for model prediction. The lack of possibility to interact with explanations makes it difficult to verify and understand exactly how the model works. This creates a significant risk when using the model. It is compounded by the fact that explanations do not take into account the semantic meaning of the explained objects. To escape from the trap of static explanations, we propose an approach called LIMEcraft that allows a user to interactively select semantically consistent areas and thoroughly examine the prediction for the image instance in case of many image features. Experiments on several models showed that our method improves model safety by inspecting model fairness for image pieces that may indicate model bias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.