In the literature, diffusion studies of cell systems are usually limited to two water pools that are associated with the extracellular space and the entire interior of the cell. Therefore, the time-dependent diffusion coefficient contains information about the geometry of these two water regions and the water exchange through their boundary. This approach is due to the fact that most of these studies use pulse techniques and relatively low gradients, which prevents the achievement of high b-values. As a consequence, it is not possible to register the signal coming from proton populations with a very low bulk or apparent self-diffusion coefficient, such as cell organelles. The purpose of this work was to obtain information on the geometry and dynamics of water at a level lower than the cell size, i.e., in cellular structures, using the time-dependent diffusion coefficient method. The model of the cell system was made of baker’s yeast (Saccharomyces cerevisiae) since that is commonly available and well-characterized. We measured characteristic fresh yeast properties with the application of a compact Nuclear Magnetic Resonance (NMR)-Magritek Mobile Universal Surface Explorer (MoUSE) device with a very high, constant gradient (~24 T/m), which enabled us to obtain a sufficient stimulated echo attenuation even for very short diffusion times (0.2–40 ms) and to apply very short diffusion encoding times. In this work, due to a very large diffusion weighting (b-values), splitting the signal into three components was possible, among which one was associated only with cellular structures. Time-dependent diffusion coefficient analysis allowed us to determine the self-diffusion coefficients of extracellular fluid, cytoplasm and cellular organelles, as well as compartment sizes. Cellular organelles contributing to each compartment were identified based on the random walk simulations and approximate volumes of water pools calculated using theoretical sizes or molar fractions. Information about different cell structures is contained in different compartments depending on the diffusion regime, which is inherent in studies applying extremely high gradients.
Recent theories about the sources of silica in bedded and nodular cherts do not fit the origin of cherts from the Kraków–Częstochowa Upland. Since siliceous sponges as a single source of silica is questionable, assumptions about additional sources have to be verified. In order to do so, three samples of nodular cherts and one representative sample of bedded chert were studied by means of 1 H LF-NMR 1D and 2D relaxometry and complementary geochemical methods. The results were compared with the literature and standard silica materials which helped to identify five types of 1 H signal. The very distinct 1D- T 2 spectra of the dried samples indicated the existence of closed pores which, after comprehensive analysis, were identified as inclusions filled with different types of siliceous materials. Saturation revealed the differences between nodular and bedded cherts that were visible mainly in the amount and size of open porosity. The principal component analysis of NMR parameters showed the excellent separation of these two groups of samples and this is well visible on the biplots. Additionally, the estimated pore size distribution revealed that the total porosity of around 2% consisted primarily of mesopores (2–50 nm in diameter) and macropores (diameter >50 nm). In bedded cherts, open porosity is dominated by macropores, while the share of mesopores and macropores is similar in nodular cherts.
This paper reports a first application of diffusion tensor imaging with corrections by using the B-matrix spatial distribution method (BSD-DTI) for peripheral artery disease (PAD) detected in the changes of diffusion tensor parameters (DTPs). A 76-year-old male was diagnosed as having PAD, since he demonstrated in angiographic images of lower legs severe arterial stenosis and the presence of lateral and peripheral circulation and assigned to the double-blind RCT using mesenchymal stem cells (MSCs) or placebo for the regenerative treatment of implications of ischemic diseases. In order to indicate changes in diffusivity in calf muscles in comparison to a healthy control, a DTI methodology was developed. The main advantage of the applied protocol was decreased scanning time, which was achieved by reducing b-value and number of scans (to 1), while maintaining minimal number of diffusion gradient directions and high resolution. This was possible due to calibration via the BSD method, which reduced systematic errors and allowed quantitative analysis. In the course of PAD, diffusivities were elevated across the calf muscles in posterior compartment and lost their anisotropy. Different character was noticed for anterior compartment, in which diffusivities along and across muscles were decreased without a significant loss of anisotropy. After the intervention involving a series of injections, the improvement of DTPs and tractography was visible, but can be assigned neither to MSCs nor placebo before unblinding.
In this article, the results of a study of the magnetic dynamics of superparamagnetic iron oxide nanoparticles (SPIONs) with chitosan and polyethylene glycol (PEG) coatings are reported. The materials were prepared by the co-precipitation method and characterized by X-ray diffraction, dynamic light scattering and scanning transmission electron microscopy. It was shown that the cores contain maghemite, and their hydrodynamic diameters vary from 49 nm for PEG-coated to 200 nm for chitosan-coated particles. The magnetic dynamics of the nanoparticles in terms of the function of temperature was studied with magnetic susceptometry and Mössbauer spectroscopy. Their superparamagnetic fluctuations frequencies, determined from the fits of Mössbauer spectra, range from tens to hundreds of megahertz at room temperature and mostly decrease in the applied magnetic field. For water suspensions of nanoparticles, maxima are observed in the absorption part of magnetic susceptibility and they shift to higher temperatures with increasing excitation frequency. A step-like decrease of the susceptibility occurs at freezing, and from that, the Brown’s and Néel’s contributions are extracted and compared for nanoparticles differing in core sizes and types of coating. The results are analyzed and discussed with respect to the tailoring of the dynamic properties of these nanoparticle materials for requirements related to the characteristic frequency ranges of MRI and electromagnetic field hyperthermia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.