The synthesis of hydroxyl-functionalized propylenebased terpolymers and their performance as hot melt adhesives were investigated. The products comprise uniformly distributed butyl and 4-hydroxyl-butyl branches along the polypropylene backbone. Despite the low hydroxyl-functionality level of ≤ 0.5 mol %, hydroxyl-functionalized terpolymers show formidable adhesion to aluminum and steel, providing an adhesive strength exceeding 16 MPa, whereas the nonfunctionalized congeners hardly adhere to these metals. As evidenced by rheological measurements, the functional groups form dynamic crosslinks based on hydrogen bonding and electrostatic interactions with aluminum oxide hydroxide residues, remaining in the product after polymerization. At the industrial application temperature of 180 °C, nondeashed and deashed samples of polymers having 0.1 or 0.5 mol % incorporated 5-hexen-1-ol gave, upon cooling to room temperature, comparable adhesive strengths. Deashing and increasing the functionality level lead to a significant improvement of the adhesion strength at a lower application temperature (130 °C), allowing application of the hydroxyl-functionalized propylene-based terpolymers as high-strength hot melt adhesives for combinations of polypropylene and metals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.