Two films of ZnO-Ag/polystyrene (ZnO-Ag/PS) and ZnO/polystyrene (ZnO/PS) have been prepared and the photodegradation ability of stabilized catalysts was evaluated for methylene blue (MB) degradation. The efficiency of ZnO improved against recombination of electron-hole pair by modification of catalyst surface with Ag photodeposition to be more resistant towards photocorrosion. ZnO-Ag catalyst was characterized by SEM and EDS analysis to show high roughness of this catalyst and Ag deposited on the surface was 2% (molar ratio). ZnO-Ag/PS and ZnO/PS composites were made as films and were then analyzed by FTIR spectra that showed the interaction of ZnO and ZnO-Ag with polystyrene appeared in the range of 400-620 cm -1 , XRD pattern indicated the presence of Ag nanoparticles on the surface of ZnO and ZnO/PS film has maximum absorbance at 376 nm in UV-VIS spectra. This value shifted to 380 nm because of the photodeposition. The photocatalytic reaction was depicted using MB in the UVirradiation action of stacked films in MB solution. The result showed that both ZnO-Ag/PS and ZnO/PS films gave efficiency to remove MB by 97% and 70%, respectively. The reusability test of the films showed that ZnO-Ag/PS was more resistant than ZnO/PS. The presence of Ag also increased the efficiency in photodegradation and resistance against photocorrosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.