The iridoids comprise a large family of distinctive bicyclic monoterpenes that possess a wide range of pharmacological activities, including anticancer, anti-inflammatory, antifungal and antibacterial activities. Additionally, certain iridoids are used as sex pheromones in agriculturally important species of aphids, a fact that has underpinned innovative and integrated pest management strategies. To harness the biotechnological potential of this natural product class, the enzymes involved in the biosynthetic pathway must be elucidated. Here we report the discovery of iridoid synthase, a plant-derived enzyme that generates the iridoid ring scaffold, as evidenced by biochemical assays, gene silencing, co-expression analysis and localization studies. In contrast to all known monoterpene cyclases, which use geranyl diphosphate as substrate and invoke a cationic intermediate, iridoid synthase uses the linear monoterpene 10-oxogeranial as substrate and probably couples an initial NAD(P)H-dependent reduction step with a subsequent cyclization step via a Diels-Alder cycloaddition or a Michael addition. Our results illustrate how a short-chain reductase was recruited as cyclase for the production of iridoids in medicinal plants. Furthermore, we highlight the prospects of using unrelated reductases to generate artificial cyclic scaffolds. Beyond the recognition of an alternative biochemical mechanism for the biosynthesis of cyclic terpenes, we anticipate that our work will enable the large-scale heterologous production of iridoids in plants and microorganisms for agricultural and pharmaceutical applications.
Installing halogens onto natural products can generate compounds with novel or improved properties. Notably, enzymatic halogenation is now possible as a result of the discovery of several classes of halogenases; however, applications are limited because of the narrow substrate specificity of these enzymes. Here we demonstrate that the flavin-dependent halogenase RebH can be engineered to install chlorine preferentially onto tryptamine rather than the native substrate tryptophan. Tryptamine is a direct precursor to many alkaloid natural products, including approximately 3000 monoterpene indole alkaloids. To validate the function of this engineered enzyme in vivo, we transformed the tryptamine-specific RebH mutant (Y455W) into the alkaloid-producing plant Madagascar periwinkle ( Catharanthus roseus ) and observed the de novo production of the halogenated alkaloid 12-chloro-19,20-dihydroakuammicine. While wild-type (WT) RebH has been integrated into periwinkle metabolism previously, the resulting tissue cultures accumulated substantial levels of 7-chlorotryptophan. Tryptophan decarboxylase, the enzyme that converts tryptophan to tryptamine, accepts 7-chlorotryptophan at only 3% of the efficiency of the native substrate tryptophan, thereby creating a bottleneck. The RebH Y455W mutant circumvents this bottleneck by installing chlorine onto tryptamine, a downstream substrate. In comparison with cultures harboring RebH and WT RebF, tissue cultures containing mutant RebH Y455W and RebF also accumulate microgram per gram fresh-weight quantities of 12-chloro-19,20-dihydroakuammicine but, in contrast, do not accumulate 7-chlorotryptophan, demonstrating the selectivity and potential utility of this mutant in metabolic engineering applications.
Proteomic plasticity undergirds stress responses in plants, and understanding such responses requires accurate measurement of the extent to which proteins levels are adjusted to counter external stimuli. Here, we adapt bioorthogonal noncanonical amino acid tagging (BONCAT) to interrogate protein synthesis in vegetative Arabidopsis (Arabidopsis thaliana) seedlings. BONCAT relies on the translational incorporation of a noncanonical amino acid probe into cellular proteins. In this study, the probe is the Met surrogate azidohomoalanine (Aha), which carries a reactive azide moiety in its amino acid side chain. The azide handle in Aha can be selectively conjugated to dyes and functionalized beads to enable visualization and enrichment of newly synthesized proteins. We show that BONCAT is sensitive enough to detect Arabidopsis proteins synthesized within a 30-min interval defined by an Aha pulse and that the method can be used to detect proteins made under conditions of light stress, osmotic shock, salt stress, heat stress, and recovery from heat stress. We further establish that BONCAT can be coupled to tandem liquid chromatography-mass spectrometry to identify and quantify proteins synthesized during heat stress and recovery from heat stress. Our results are consistent with a model in which, upon the onset of heat stress, translation is rapidly reprogrammed to enhance the synthesis of stress mitigators and is again altered during recovery. All experiments were carried out with commercially available reagents, highlighting the accessibility of the BONCAT method to researchers interested in stress responses as well as translational and posttranslational regulation in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.