Embora problemas relacionados à saúde mental usualmente tenham início durante a infância ou adolescência, apenas uma pequena parcela desta população recebe diagnóstico e tratamento adequado. Uma das causas para a baixa taxa de identificação de desordens mentais é a falta de instrumentos especializados nesta tarefa, especialmente ferramentas que reduzam o custo e o tempo necessário para a execução de processos de triagem psicológica. Na literatura recente, muitos autores vêm analisando como o aprendizado de máquina pode contribuir para a construção de instrumentos de avaliação psicológica, contudo poucas pesquisas se propõem a construir ferramentas válidas para grupos compostos majoritariamente por crianças. O presente trabalho propõe um modelo de ferramenta para apoio à triagem psicológica infantil baseada em testes clínicos e deep learning. Tal modelo foi avaliado através de uma implementação que combina o uso de Redes Neurais Convolucionais e um sistema de escalas clínicas para avaliação do Desenho da Figura Humana. Os resultados apresentados pelos modelos de classificação treinados demonstraram bons índices de acerto considerando-se a pequena amostra disponível, o que sugere que ferramentas de deep learning podem ser adequadas para o cenário proposto.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.