Digital elevation models (DEMs) derived from light detection and ranging (LiDAR) technology are becoming the standard in representing terrain surfaces. They have numerous applications in forestry, agriculture, and natural resources. Although elevation errors are much lower than those derived from traditional methods, accuracies have been reported to decrease with terrain slope and vegetation cover. In this study, we quantified the accuracy of airborne Li-DAR-derived DEM in deciduous eastern forests of the Cumberland Plateau. We measured relative elevation changes within field plots located across different slope and ruggedness classes to quantify DEM accuracy. We compared elevation change errors of DEMs derived from three LiDAR datasets: a low-density (~1.5 pts•m ), and a combined dataset. We also compared DEMs obtained by interpolating the ground points using four interpolation methods. Results indicate that mean elevation change error (MECE) increased with terrain slope and ruggedness with an average of 73.6 cm. MECE values ranged from 23.2 cm in areas with lowest slope (0% -39%) and ruggedness (0% -28%) classes to 145.5 cm in areas with highest slope (50% -103%) and ruggedness (46% -103%) classes. We found no significant differences among interpolation methods or LiDAR datasets; the latter of which indicates that similar accuracy levels can be achieved with the low-density datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.