Landsat 7 and RADARSAT‐1/RADARSAT‐2 satellite images are used to produce the most comprehensive record of glacier motion in the Canadian High Arctic to date and to characterize spatial and temporal variability in ice flow over the past ~15 years. This allows us to assess whether dynamically driven glacier change can be attributed to “surging” or “pulsing,” or whether other mechanisms are involved. RADAR velocity mapping allows annual regional dynamic discharge (iceberg calving) to be calculated for 2000 and the period 2011–2015 (yielding a mean regional discharge of 2.21 ± 0.68 Gt a−1), and velocities derived from feature tracking of optical imagery allow for annual dynamic discharge to be calculated for select glaciers from 1999 to 2010. Since ~2011, several of the major tidewater‐terminating glaciers within the region have decelerated and their dynamic discharge has decreased. Trinity and Wykeham Glaciers (Prince of Wales Icefield) represent a notable departure from this pattern as they have generally accelerated over the study period. The resulting increase in dynamic discharge from these glaciers entirely compensates (within error limits) for the decrease in discharge from the other tidewater glaciers across the study region. These two glaciers accounted for ~62% of total regional dynamic discharge in winter 2015 (compared to ~22% in 2000), demonstrating that total ice discharge from the Canadian High Arctic can be sensitive to variations in flow of just a few tidewater glaciers.
Recent studies indicate an increase in glacier mass loss from the Canadian Arctic Archipelago as a result of warmer summer air temperatures. However, no complete assessment of dynamic ice discharge from this region exists. We present the first complete surface velocity mapping of all ice masses in the Queen Elizabeth Islands and show that these ice masses discharged~2.6 ± 0.8 Gt a À1 of ice to the oceans in winter2012. Approximately 50% of the dynamic discharge was channeled through non surge-type Trinity and Wykeham Glaciers alone. Dynamic discharge of the surge-type Mittie Glacier varied from 0.90 ± 0.09 Gt a
À1during its 2003 surge to 0.02 ± 0.02 Gt a À1 during quiescence in 2012, highlighting the importance of surge-type glaciers for interannual variability in regional mass loss. Queen Elizabeth Islands glaciers currently account for~7.5% of reported dynamic discharge from Arctic ice masses outside Greenland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.