This paper presents scented widgets, graphical user interface controls enhanced with embedded visualizations that facilitate navigation in information spaces. We describe design guidelines for adding visual cues to common user interface widgets such as radio buttons, sliders, and combo boxes and contribute a general software framework for applying scented widgets within applications with minimal modifications to existing source code. We provide a number of example applications and describe a controlled experiment which finds that users exploring unfamiliar data make up to twice as many unique discoveries using widgets imbued with social navigation data. However, these differences equalize as familiarity with the data increases.
We introduce embedded data representations, the use of visual and physical representations of data that are deeply integrated with the physical spaces, objects, and entities to which the data refers. Technologies like lightweight wireless displays, mixed reality hardware, and autonomous vehicles are making it increasingly easier to display data in-context. While researchers and artists have already begun to create embedded data representations, the benefits, trade-offs, and even the language necessary to describe and compare these approaches remain unexplored. In this paper, we formalize the notion of physical data referents - the real-world entities and spaces to which data corresponds - and examine the relationship between referents and the visual and physical representations of their data. We differentiate situated representations, which display data in proximity to data referents, and embedded representations, which display data so that it spatially coincides with data referents. Drawing on examples from visualization, ubiquitous computing, and art, we explore the role of spatial indirection, scale, and interaction for embedded representations. We also examine the tradeoffs between non-situated, situated, and embedded data displays, including both visualizations and physicalizations. Based on our observations, we identify a variety of design challenges for embedded data representation, and suggest opportunities for future research and applications.
Web-based social data analysis tools that rely on public discussion to produce hypotheses or explanations of patterns and trends in data rarely yield high-quality results in practice. Crowdsourcing offers an alternative approach in which an analyst pays workers to generate such explanations. Yet, asking workers with varying skills, backgrounds and motivations to simply "Explain why a chart is interesting" can result in irrelevant, unclear or speculative explanations of variable quality. To address these problems, we contribute seven strategies for improving the quality and diversity of worker-generated explanations. Our experiments show that using (S1) feature-oriented prompts, providing (S2) good examples, and including (S3) reference gathering, (S4) chart reading, and (S5) annotation subtasks increases the quality of responses by 28% for US workers and 196% for non-US workers. Feature-oriented prompts improve explanation quality by 69% to 236% depending on the prompt. We also show that (S6) pre-annotating charts can focus workers' attention on relevant details, and demonstrate that (S7) generating explanations iteratively increases explanation diversity without increasing worker attrition. We used our techniques to generate 910 explanations for 16 datasets, and found that 63% were of high quality. These results demonstrate that paid crowd workers can reliably generate diverse, high-quality explanations that support the analysis of specific datasets.
Immersive Analytics is a quickly evolving field that unites several areas such as visualisation, immersive environments, and humancomputer interaction to support human data analysis with emerging technologies. This research has thrived over the past years with Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.
Abstract. As sensing technologies become increasingly distributed and democratized, citizens and novice users are becoming responsible for the kinds of data collection and analysis that have traditionally been the purview of professional scientists and analysts. Leveraging this citizen engagement effectively, however, requires not only tools for sensing and data collection but also mechanisms for understanding and utilizing input from both novice and expert stakeholders. When successful, this process can result in actionable findings that leverage and engage community members and build on their experiences and observations. We explored this process of knowledge production through several dozen interviews with novice community members, scientists, and regulators as part of the design of a mobile air quality monitoring system. From these interviews, we derived design principles and a framework for describing data collection and knowledge generation in citizen science settings, culminating in the user-centered design of a system for community analysis of air quality data. Unlike prior systems, ours breaks analysis tasks into discrete mini-applications designed to facilitate and scaffold novice contributions. An evaluation we conducted with community members in an area with air quality concerns indicates that these mini-applications help participants identify relevant phenomena and generate local knowledge contributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.