Herein we described the application of ES-DBSA and Au/ES-DBSA nanocomposite for the first time as a novel, facile, and cheap method for electrochemical sensitive detection of formaldehyde. The gold capping agent ODA hinders the ES-DBSA conductivity through interaction with the DBSA sulfo group.
Nanomaterials are promising in the field of optical sensors due to their unique properties. Emeraldine base of polyaniline (Nano EB-PANI) was prepared, characterized and applied as an optical formaldehyde sensor. FTIR data confirm the formation of the EB-PANI. TEM and SEM revealed the size and shape of the nanoscale EB-PANI. XRD showed that the obtained nano EB-PANI has a partial crystalline nature. The sensing mechanism is based on the reaction of formaldehyde with Nano EB-PANI- to form a complex as described by molecular modeling HF/3-21G** level of theory. Results showed that Nano EB-PANI- detect low concentrations of formaldehyde ranging from 0.0003 to 0.9 ppm in a dose-dependent manner. The molecular modeling theory analysis showed that formaldehyde could interact with the amine of EB-PANI in, ring 3 or 4 or both together. The binding energy and dipole moment of the interaction between formaldehyde and polyaniline nanosensor were calculated by HF/3-21g** level of theory. The interaction with ring 3-NH gives a less stable product with a high dipole moment 6.978 Debye comparing with 1.678 Debye for the product of formaldehyde interaction with the terminal ring 4-NH. The development of such novel EB-PANI nanosensor can be used as, reliable and sensitive formaldehyde sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.