Photothermal therapy has recently gained a considerable attention particularly after the revolution of nanomaterials and nanotechnology. The aim of the present study is to assess the optimal photothermal response through investigating some effective parameters of spherical gold nanoparticles (AuNPs), e.g., type, size, and concentration, as a preclinical study for efficient photothermal treatment. Tissue-simulating phantoms based on agar and water media incorporated with two different types of AuNPs, spherical Au particles capped with citrate or spherical Au core-silica shell NPs, were built. Heat evolution for each NP type was recorded in the phantom matrix with different particle sizes at various concentrations following exposure to low laser power (irradiance 35 mW/cm(2)) and emitting at λ = 532 nm. Our results demonstrated that AuNPs capped with citrate recorded higher temperature elevations than those capped with silica shell. Particles with smaller sizes produced more heating effect than those having larger sizes. Also, higher temperatures were recorded at a critical concentration of NPs. Exponential decay constants based on theoretical calculations demonstrated that laser attenuation increases with the continuous increase of particle size and concentration.
The energy levels, transition probabilities and effective collision strengths for the 1s22s22p63s23p63d10 and the 1s22s22p63s23p63d94l
(l=s, p, d and f) states of nickel-like Sm are used in the calculation of the reduced population of 55 fine structure levels over a wide range of electron density values (from 1020 to 4×1022) and at various electron plasma temperatures. For those transitions with positive population inversion factor, the gain coefficients are evaluated and plotted against the electron density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.