Defensins are a newly recognized class of small, cationic polypeptides that have in vitro microbicidal activity toward certain bacteria, fungi, and viruses. Human neutrophil granules were separated into 13 density fractions by using a high-resolution Percoll gradient centrifugation procedure, and the distribution of the three defensin polypeptides in these fractions was determined. Levels of defensins and several granule marker proteins were estimated in each fraction from relative staining intensities of bands following acid-urea and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of total acid-extractable proteins. These results were confirmed by enzyme immunoassay measurements of defensins and quantitative determinations of the typical azurophil granule components, myeloperoxidase, beta- glucuronidase, lysozyme, and elastase. The five higher density granule fractions (H1 through H5) contained fourfold higher relative amounts of defensins as compared with the eight lower density fractions (L1 through L8), accounting for approximately 50% of the total protein. In particular, fraction H5 was especially enriched in defensins but was relatively deficient in myeloperoxidase, beta-glucuronidase, lysozyme, and elastase. Ultrastructural morphology showed that fraction H5 contained the largest granules. Seventy percent of these granules exhibited electron-dense rims and electron-lucent central regions when stained with methanolic uranyl acetate-lead citrate, and 70% showed this same characteristic rim-staining pattern after limited reaction (30 minutes) for peroxidase with diaminobenzidine. These distinctively large, rim-stained granules were identified in intact, mature peripheral blood neutrophils as well as in human bone marrow promyelocytes, indicating that their synthesis occurs during early myeloid development. This unusual granule type may play a specialized role in the microbicidal functions of the neutrophil, distinct from that of typical azurophil granules.
The highly conserved and mutationally intolerant retroviral zinc finger motif of the HIV-1 nucleocapsid protein (NC) is an attractive target for drug therapy due to its participation in multiple stages of the viral replication cycle. A literature search identified cystamine, thiamine disulfide, and disulfiram as compounds that have been shown to inhibit HIV-1 replication by poorly defined mechanisms and that have electrophilic functional groups that might react with the metal-coordinating sulfur atoms of the retroviral zinc fingers and cause zinc ejection. 1H NMR studies reveal that these compounds readily eject zinc from synthetic peptides with sequences corresponding to the HIV-1 NC zinc fingers, as well as from the intact HIV-1 NC protein. In contrast, the reduced forms of disulfiram and cystamine, diethyl dithiocarbamate and cysteamine, respectively, were found to be ineffective at zinc ejection, although cysteamine formed a transient complex with the zinc fingers. Studies with HIV-1-infected human T-cells and monocyte/macrophage cultures revealed that cystamine and cysteamine possess significant antiviral properties at nontoxic concentrations, which warrant their consideration as therapeutically useful anti-HIV agents.
The Cys-Xaa2-Cys-Xaa4-His-Xaa4-Cys zinc fingers of retroviral nucleocapsid (NC) proteins are prime antiviral targets due to conservation of the Cys and His chelating residues and the absolute requirement of these fingers in both early and late phases of retroviral replication. Certain 2,2′-dithiobisbenzamides (DIBAs) chemically modify the Cys residues of the fingers, thereby inhibiting in vitro replication of human immunodeficiency virus type 1 (HIV-1). We examined the consequences of DIBA interaction with cell-free virions and their subsequent ability to initiate new rounds of infection. The DIBAs entered intact virions and chemically modified the p7NC proteins, resulting in extensive disulphide cross-linkage among zinc fingers of adjacent p7NC molecules. Likewise, treatment of Pr55gag-laden pseudovirions, used as a model of virion particles, with DIBAs resulted in Pr55gag cross-linkage. In contrast, monomeric p7NC protein did not form cross-linkages after DIBA treatment, indicating that the retroviral zinc finger proteins must exist in close proximity for cross-linkage to occur. Cross-linkage of p7NC in virions correlated with loss of infectivity and decreased proviral DNA synthesis during acute infection, even though DIBAs did not inhibit virus attachment to host cells or reverse transcriptase enzymatic activity. Thus, DIBA-type molecules impair the ability of HIV-1 virions to initiate reverse transcription through their action on the retroviral zinc finger, thereby blocking further rounds of replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.