A new parallel-type gripper mechanism is proposed in this work. This device has a parallelogramic platform that can be flexibly folded. Therefore, this mechanism not only can be used to grasp an object having irregular shape or large volume, but also can be utilized as a micro-positioning device after grasping objects. Forward position analysis and platform kinematics are investigated to deal with motion tracking and force control. Kinematic optimization is performed to design a parallel-type gripping mechanism so that it can reach the specified workspace, span the given range of the specified configuration parameters, and generate a desired force to grasp an object. A pneumatic rotator is employed for actuation and a miniaturized proportional 4/3-way directional valve is specially developed to deal with feedback-based dynamic control. The proportional valve allows indirect force control by measuring the offset-load pressure raised by the contact between the grasped object and the parallel platform. In experimental work, the performance of the motion tracking and indirect force control has been shown to be successful.
Closed-form forward/reverse position solutions for a 6-degree-offreedom (DoF) parallel mechanism that has some type of nonsymmetric geometry are derived in this study. Particularly, the derived forward-position analysis is applicable to the mechanisms in which three passive joints are constrained to move parallel to the moving plate. Its kinematic and dynamic characteristics are investigated via isotropic index of the Jacobian matrix and isotropic index of the output effective inertia matrix, respectively. From this investigation, it is found that the mechanism has fairly uniform kinematic/dynamic characteristics throughout its workspace. To examine the effectiveness of the proposed 3-PPSP-type mechanism, a prototype is designed, implemented, and tested experimentally under various operating conditions. A simple PID controller is applied to the system, and its joint positions are servo-controlled. The controlled system showed a good trajectory performance. Noting that a more advanced controller requiring a forward-and/or reverse-position solution can be applied to the system in real time, it can be contended that the manipulator is a candidate for the high-precision manipulator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.