Fine particulate matter (PM2.5) has gained increasing attention due to its adverse health effects to human. In Taiwan, it was conventionally monitored by large environmental monitoring stations of the Environmental Protection Administration. However, only a small number of 77 monitoring stations are currently established. Recently, a project using a large number of small devices, called AirBoxes, was launched in March 2016 to monitor PM2.5 concentrations. Although thousands of AirBoxes have been deployed across Taiwan to give a broader coverage, they are mostly located in big cities and their measurements are less accurate. In this paper, we apply a robust kriging method that provides a smoothly varied real‐time PM2.5 concentration map and its associated standard error map. In addition, we develop a novel spatio‐temporal control chart that monitors anomalous measurements by utilizing neighboring AirBox information. Our method automatically adapts to different neighboring structures at different AirBox locations without the need to specify a neighborhood range. The proposed method has abilities to detect potential emission sources, malfunctioned AirBoxes, and AirBoxes that are wrongly put indoors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.