Abstract. Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes) and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Lower mean N2 fixation rate was found in the North Atlantic Ocean than the Pacific Ocean. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (53–73) Tg N yr−1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 4.7 (2.3–9.6) Tg C from cell counts and to 89 (40–200) Tg C from nifH-based abundances. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. This evolving database can be used to study spatial and temporal distributions and variations of marine N2 fixation, to validate geochemical estimates and to parameterize and validate biogeochemical models. The database is stored in PANGAEA (http://doi.pangaea.de/10.1594/PANGAEA.774851).
Recent studies suggest that mesoscale eddies may support elevated dinitrogen (N2) fixation rates (NFRs) and abundances of N2-fixing microorganisms (diazotrophs), yet the strength and mechanistic underpinnings of this trend are not fully understood. We explored the relationships among NFRs, cyanobacterial diazotroph abundances, and environmental conditions of mesoscale eddies by sampling three pairs of eddies of opposite polarity in the North Pacific Subtropical Gyre. Using the Hawaii Ocean Time-series for historical context, we found that NFRs were anomalously high (up to 18.6 nmol N L-1 d-1) in the centers of two anticyclones. The highest NFR was linked to a positive anomaly in Crocosphaera abundance. To unravel the main processes and players, we used high-resolution abundance data, metatranscriptomes, deck-board incubations, and population models to evaluate three mechanisms for each diazotroph population: bottom-up control, top-down control, and physical control. Based on cell division and grazing rate estimates, Crocosphaera anomalies appeared to be partially driven by both bottom-up control (due to elevated surface phosphate concentration promoting high growth rates) and top-down control (reduced grazing pressure from putative predators). In contrast, although large, buoyant Trichodesmium and symbionts of diatoms (Richelia ) appeared to have accumulated at the fronts between cyclonic and anticyclonic eddies, they had lower growth rates and contributed less to bulk NFRs. Together, the interplay of these three complex mechanisms may explain reports of elevated diazotroph abundances and NFRs associated with anticyclones and eddy fronts.
Marine ecosystem models often consider temporal dynamics on the order of months to years, and spatial dynamics over regional and global scales as a means to understand the ecology, evolution, and biogeochemical impacts of marine life. Large-scale dynamics are themselves driven over diel scales as a result of light-driven forcing, feedback, and interactions. Motivated by high-frequency measurements taken by Lagrangian sampling in the North Pacific Subtropical Gyre, we develop a hierarchical set of multitrophic community ecology models to investigate and understand daily ecological dynamics in the near-surface ocean including impacts of light-driven growth, infection, grazing, and phytoplankton size structure. Using these models, we investigate the relative impacts of viral-induced and grazing mortality for Prochlorococcus; and more broadly compare in silico dynamics with in situ observations. Via model-data fitting, we show that a multi-trophic model with size structure can jointly explain diel changes in cyanobacterial abundances, cyanobacterial size structure, viral abundance, viral infection rates, and grazer abundances. In doing so, we find that a significant component (between 5% to 55%) of estimated Prochlorococcus mortality is not attributed to either viral lysis (by T4- or T7-like cyanophage) or grazing by heterotrophic nanoflagellates. Instead, model-data integration suggests a heightened ecological relevance of other mortality mechanisms -- including grazing by other predators, particle aggregation, and stress-induced loss mechanisms. Altogether, linking mechanistic multitrophic models with high-resolution measurements provides a route for understanding of diel origins of large-scale marine microbial community and ecosystem dynamics.
Care for patients who experience out-of-hospital cardiac arrest (OHCA) has rapidly evolved in the past decade. Increased sophistication of care in the community, emergency medical services (EMS) and hospital setting is associated with improved patient-centred outcomes. Notably, Utstein survival doubled from 11.6% to 23.1% between 2011 and 2016. These achievements involved collaboration between policymakers, clinicians and researchers, and were made possible by a strategic interplay of policy, research and implementation. We review the development and current state of OHCA in Singapore using primary population-based data from the Pan-Asian Resuscitation Outcomes Study and an unstructured search of research databases. We discuss the roles of important milestones in policy, community, dispatch, EMS and hospital interventions. Finally, we relate these interventions to relevant processes and outcomes, such as the relationship between the strategic implementation of bystander cardiopulmonary resuscitation and placement of automated external defibrillator with return of spontaneous circulation, survival to discharge and survival with favourable neurological outcomes.
A large-volume mesocosm-based nutrient perturbation experiment was conducted off the island of Hawai‘i, USA, to investigate the response of surface ocean phytoplankton communities to the addition of macronutrients, trace metals, and vitamins and to assess the feasibility of using mesocosms in the open ocean. Three free-drifting mesocosms (~60 m3) were deployed: one mesocosm served as a control (no nutrient amendments); a second (termed +P) was amended with nitrate (N), silicate (Si), phosphate (P), and a trace metal + vitamin mixture; and a third (termed -P) was amended with N, Si, and a trace metal + vitamin mixture but no P. These mesocosms were unreplicated due to logistical constraints and hence differences between treatments are qualitative. After 6 d, the largest response of the phytoplankton community was observed in the +P mesocosm, where chlorophyll a and 14C-based primary production were 2-3× greater than in the -P mesocosm and 4-6× greater than in the control. Comparison between mesocosm and ‘microcosm’ incubations (20 l) revealed differences in the magnitude and timing of production and marked differences in community structure with a reduced response of diatoms in microcosm treatments. Notably, we also observed pronounced declines in Prochlorococcus populations in all treatments, although these were greater in microcosms (up to 99%). Overall, this study confirmed the feasibility of deploying free-drifting mesocosms in the open ocean as a potentially powerful tool to investigate ecological impacts of nutrient perturbations and constitutes a valuable first step towards scaling plankton manipulation experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.