Background: Methylmercury (MeHg) is a known neuro-toxicant. Emerging evidence indicates it may have adverse effects on the neuro-logic and other body systems at common low levels of exposure. Impacts of MeHg exposure could vary by individual susceptibility or be confounded by bene-ficial nutrients in fish containing MeHg. Despite its global relevance, synthesis of the available literature on low-level MeHg exposure has been limited.Objectives: We undertook a synthesis of the current knowledge on the human health effects of low-level MeHg exposure to provide a basis for future research efforts, risk assessment, and exposure remediation policies worldwide.Data sources and extraction: We reviewed the published literature for original human epidemio-logic research articles that reported a direct biomarker of mercury exposure. To focus on high-quality studies and those specifically on low mercury exposure, we excluded case series, as well as studies of populations with unusually high fish consumption (e.g., the Seychelles), marine mammal consumption (e.g., the Faroe Islands, circumpolar, and other indigenous populations), or consumption of highly contaminated fish (e.g., gold-mining regions in the Amazon).Data synthesis: Recent evidence raises the possibility of effects of low-level MeHg exposure on fetal growth among susceptible subgroups and on infant growth in the first 2 years of life. Low-level effects of MeHg on neuro-logic outcomes may differ by age, sex, and timing of exposure. No clear pattern has been observed for cardio-vascular disease (CVD) risk across populations or for specific CVD end points. For the few studies evaluating immunologic effects associated with MeHg, results have been inconsistent.Conclusions: Studies targeted at identifying potential mechanisms of low-level MeHg effects and characterizing individual susceptibility, sexual dimorphism, and non-linearity in dose response would help guide future prevention, policy, and regulatory efforts surrounding MeHg exposure.
Introduction Polybrominated diphenyl ethers (PBDEs) comprise a class of halogenated compounds used extensively as flame retardant chemicals in consumer products resulting in nearly ubiquitous human exposure. Mounting evidence suggests that PBDEs are developmental neurotoxicants; however, associations between early life exposure and child behavior have been largely limited to a single developmental time point. Methods The study population consists primarily of white, black and Chinese women who were pregnant on 11 September 2001 and delivered at 1 of 3 downtown New York City hospitals. Maternal–child pairs were followed through age 7 years. Cord blood was collected at delivery and PBDE plasma levels for 210 samples were analyzed by the U.S. Centers for Disease Control and Prevention. The Child Behavior Checklist, a validated maternal-report instrument used for assessing child behavior, was administered annually between the ages of 3 and 7 years. We analyzed the association between natural log-transformed and dichotomized (low vs. high) PBDEs and attention problems using multivariable adjusted negative binomial regression. Results We detected 4 PBDE congeners in more than 50% of samples, with concentrations highest for BDE-47 (median ± IQR: 11.2 ± 19.6 ng/g). In adjusted analyses, we detected associations between BDE-47 (1.21, 95% CI: 1.00, 1.47), and BDE-153 (1.18, 95% CI: 1.00, 1.39) in cord plasma and increased attention problems among children at age 4 (n = 109) but not 6 (n = 107) years. Conclusions Our findings demonstrate a positive trend between prenatal PBDE exposure and early childhood attention problems, and are consistent with previous research reporting associations between prenatal PBDE exposure and disrupted child behaviors.
Importance Polycyclic aromatic hydrocarbons (PAH) are carcinogenic and neurotoxic combustion by-products commonly found in urban air. Exposure to PAH is disproportionately high in low income communities of color who also experience chronic economic stress. Objective In a prospective cohort study in New York City (NYC) we previously found a significant association between prenatal PAH exposure and Attention Deficit Hyperactivity Disorder (ADHD) behavior problems at age 9. Here, we have evaluated the joint effects of prenatal exposure to PAH and prenatal/childhood material hardship on ADHD behavior problems. Materials and Methods We enrolled nonsmoking African-American and Dominican pregnant women in New York City between 1998 and 2006 and followed their children through 9 years of age. As a biomarker of prenatal PAH exposure, PAH-DNA adducts were measured in maternal blood at delivery and were dichotomized at the limit of detection (to indicate high vs. low exposure). Maternal material hardship (lack of adequate food, housing, utilities, and clothing) was self-reported prenatally and at multiple time points through child age 9. Latent variable analysis identified four distinct patterns of hardship. ADHD behavior problems were assessed using the Conners Parent Rating Scale-Revised. Analyses adjusted for relevant covariates. Results Among 351 children in our sample, across all hardship groups, children with high prenatal PAH exposure (high adducts) generally had more symptoms of ADHD (higher scores) compared to those with low PAH exposure. The greatest difference was seen among the children with hardship persisting from pregnancy through childhood. Although the interactions between high PAH exposure and hardship experienced at either period (“persistent” hardship or “any” hardship) were not significant, we observed significant differences in the number of ADHD symptoms between children with high prenatal PAH exposure and either persistent hardship or any hardship compared to the others. These differences were most significant for combined high PAH and persistent hardship: ADHD Index (p<0.008), DSM-IV Inattentive (p=0.006), DSM-IV Hyperactive Impulsive problems (p=0.033), and DSM-IV Index Total (p=0.009). Conclusion The present findings add to existing evidence that co-exposure to socioeconomic disadvantage and air pollution in early life significantly increases the risk of adverse neurodevelopmental outcomes. They suggest the need for multifaceted interventions to protect pregnant mothers and their children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.