Three experiments were conducted to induce estrus and(or) ovulation in 1,590 suckled beef cows at the beginning of a spring breeding season. In Exp. 1, 890 cows at three locations were allotted to three treatments: 1) GnRH on d -7 + prostaglandin F2alpha (PGF2alpha) on d 0 (Select Synch); 2) GnRH on d -7 + PGF2alpha on d 0 (first day of the breeding season) plus a norgestomet implant (NORG) between d -7 and 0 (Select Synch + NORG); or 3) two injections of PGF2alpha given 14 d apart (2xPGF2alpha). More (P < 0.05) cycling cows were detected to have been in estrus after both treatments that included GnRH, whereas, among noncycling cows, the addition of norgestomet further increased (P < 0.05) the proportion in estrus. Pregnancy rates were greater (P < 0.01) among noncycling cows after treatments that included GnRH. For cows that calved >60 d before the onset of the breeding season, conception rates were greater (P < 0.01) than those that calved < or =60 d regardless of treatment, whereas days postpartum had no effect on rates of detected estrus. When body condition scores were < or =4 compared with >4, rates of detected estrus (P < 0.05) and conception (P = 0.07) were increased. In Exp. 2, 164 cows were treated with the Select Synch + NORG treatment and were inseminated either after estrus or at 16 h after a second GnRH injection (given 48 h after PGF2alpha). Conception and pregnancy rates tended (P = 0.08) to be or were less (P < 0.05), respectively, for noncycling cows inseminated by appointment, but pregnancy rates exceeded 53% in both protocols. In Exp. 3, 536 cows at three locations were treated with the Select Synch protocol as in Exp. 1 and inseminated either: 1) after detected estrus (Select Synch); 2) at 54 h after PGF2alpha when a second GnRH injection also was administered (Cosynch); or 3) after detected estrus until 54 h, or in the absence of estrus, at 54 h plus a second GnRH injection (Select Synch + Cosynch). Conception rates were reduced (P < 0.01) in cows that were inseminated by appointment. An interaction of AI protocol and cycling status occurred (P = 0.05) for pregnancy rates with differing results for cycling and noncycling cows. Across experiments, variable proportions of cows at various locations (21 to 78%) were cycling before the breeding season. With the GnRH or GnRH + NORG treatments, ovulation was induced in some noncycling cows. Conception rates were normal and pregnancy rates were greater than those after a PGF2alpha program, particularly when inseminations occurred after detected estrus.
Objective The overall rate of obesity is rising in the USA; this is also reflected in the military population. It is important that providers appropriately diagnose obesity and discuss treatment options with their patients. The purpose of this study was to investigate diagnosis of obesity compared to documented body mass index (BMI) in the military health system. Methods Institutional review board approval was obtained by the 59th Medical Wing (Lackland Air Force Base, Texas) as an exempt study. This study included active duty military service members aged 18-65 years who sought outpatient care at a military treatment facility from September 2013 to August 2018 with a weight within the range of 31.8-226.8 kg and height between 121.9 and 215.9 cm. Data were collected from the Clinical Data Repository vitals and M2 encounter data to determine the percentage of each sub-population with a diagnosis of obesity according to BMI (≥30 kg/m2) and International Classification of Diseases diagnosis codes. Results Using BMI, 19.2% of female and 26.8% of male service members can be diagnosed with obesity; however, only 42.2% and 35.1%, respectively, with a BMI ≥30 was diagnosed as such. This discrepancy was consistent among all service branches and BMI ranges. Conclusion This study demonstrates that obesity is underdiagnosed compared to BMI. This may result in insufficient resources being provided to patients to reduce weight. Further investigation is warranted to identify causes of underdiagnosis and potential barriers to diagnosis.
Trend, detection, and attribution analyses were performed using naturalized streamflow observations and routed land surface model runoff for 10 subbasins in the Columbia River Basin during water years 1951–2008. The Energy Exascale Earth System land‐surface model (ELM) version 1.0 and the Routing Application for Parallel computatIon of Discharge (RAPID) routing model were used to conduct semi‐factorial simulations driven by multiple sets of bias‐corrected forcing data sets. Four main potential drivers, including climate change (CLMT), CO2 concentration (CO2), nitrogen deposition (NDEP), and land use and land cover change (LULCC), were analyzed during the assessment. All subbasins showed significant (α = 0.10) declines in the observed amount of annual total streamflow, except for the Middle and Upper Snake and Upper Columbia Subbasins. These declines were led by significant decreases in June–October streamflow, which also directly led to significant decreases in peak and summer streamflow. Except for the Snake River Subbasins, LULCC had the same pattern of declines in monthly streamflow, but the period was shifted to May–September. NDEP also had significant trends in June–October; however, rather than decreases, the trends showed significant increases in streamflow. While there were significant trends in CO2, NDEP, and LULCC, their signals of change were weak in comparison to the signal in CLMT and the natural internal variability found in streamflow. Overall, the detection and attribution analysis showed that the historical changes found in annual total, center of timing of, and summer mean streamflow could be attributed to changing climate and variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.