Light-responsive compounds have been used to manipulate biological systems with spatial and temporal control of the event of interest. Illumination of alkylcobalamins with green light (>500 nm) produces carbon-centered radicals, which have been demonstrated to effectively cause DNA damage. Molecules that cause DNA and RNA strand scission are useful for studying polynucleotide structure and the binding of small molecules and proteins to polynucleotides. Most molecules that cause DNA damage in a light-dependent manner require high energy, short wavelength ultraviolet light, which is readily absorbed by nucleotide bases causing damage to the polynucleotides. Therefore, using alkylcobalamins is advantageous for causing strand scission of polynucleotides, because they are activated by light wavelengths that are not absorbed by nucleotide bases. Green-light illumination of methylcobalamin effectively causes DNA strand scission based on gel mobility assays. This cleavage is due to the generation of carbon-centered radicals based on the results of a radical trapping study. In addition, synthesis of an alkylcobalamin with a DNA binding moiety, spermine, improves DNA cleavage efficacy by an order of magnitude in comparison with methylcobalamin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.