Background Maintaining a constant driving pressure during a prolonged sigh breath lung recruitment manoeuvre (LRM) from 20 to 45 cmH20 peak inspiratory pressure in mechanically ventilated patients has been shown to be a functional test to predict fluid responsiveness (FR) when using a linear regression model of hemodynamic parameters, such as central venous pressure (CVP) and pulse pressure (PP). However, two important limitations have been raised, the use of high ventilation pressures and a regression slope calculation that is difficult to apply at bedside. This ancillary study aimed to reanalyse absolute variations of CVP (ΔCVP) and PP (ΔPP) values at lower stages of the LRM, (40, 35, and 30 cm H20 of peak inspiratory pressure) for their ability to predict fluid responsiveness. Methods Retrospective analysis of a prospective study data set in 18 mechanically ventilated patients, in an intensive care unit. CVP, systemic arterial pressure parameters and stroke volume (SV) were recorded during prolonged LRM followed by a 500 mL crystalloid volume expansion. Patients were considered as fluid responders if SV increased more than 10%. Receiver-operating curves (ROC) analysis with the corresponding grey zone approach were performed. Results Areas under the ROC to predict fluid responsiveness for ΔCVP and ΔPP were not different between the successive stepwise increase of inspiratory pressures [0.88 and 0.89 for ΔCVP at 45 and 30 cm H20 (P = 0.89), respectively, and 0.92 and 0.95 for ΔPP at 45 and 30 cm H20, respectively (P = 0.51)]. Using a maximum of 30 cmH2O inspiratory pressure during the LRM, ΔCVP and ΔPP had a threshold value to predict fluid responsiveness of 2 mmHg and 4 mmHg, with sensitivities of 89% and 89% and specificities of 67% and 89%, respectively. Combining ΔPP and ΔCVP decreased the proportion of the patients in the grey zone from 28 to 11% and showed a sensitivity of 88% and a specificity of 83%. Conclusions A stepwise PEEP elevation recruitment manoeuvre of up to 30 cm H20 may predict fluid responsiveness as well as 45 cm H20. The combination of ΔPP and ΔCVP optimizes the categorization of responder and non-responder patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.