BackgroundIn Europe, Ixodes ricinus ticks are the most important vectors of diseases threatening humans, livestock, wildlife and companion animals. Nevertheless, genomic sequence information is missing and functional annotation of transcripts and proteins is limited. This lack of information is restricting studies of the vector and its interactions with pathogens and hosts. Here we present and integrate the first analysis of the I. ricinus genome with the transcriptome and proteome of the unfed I. ricinus midgut.MethodsWhole genome sequencing was performed on I. ricinus ticks and the sequences were de novo assembled. In parallel, I. ricinus ticks were dissected and the midgut transcriptome sequenced. Both datasets were integrated by transcript discovery analysis to identify putative genes and genome contigs were screened for homology. An alignment-based and a motif-search-based approach were combined for the annotation of the midgut transcriptome. Additionally, midgut proteins were identified and annotated by mass spectrometry with public databases and the in-house built transcriptome database as references and results were cross-validated.ResultsThe de novo assembly of 1 billion DNA sequences to a reference genome of 393 Mb length provides an unprecedented insight into the I. ricinus genome. A homology search revealed sequences in the assembled genome contigs homologous to 89 % of the I. scapularis genome scaffolds indicating coverage of most genome regions. We identified moreover 6,415 putative genes. More than 10,000 transcripts from naïve midgut were annotated with respect of predicted function and/or cellular localization. By combining an alignment-based with a motif-search-based annotation approach, we doubled the number of annotations throughout all functional categories. In addition, 574 gel spots were significantly identified by mass spectrometry (p < 0.05) and 285 distinct proteins expressed in the naïve midgut were annotated functionally and/or for cellular localization. Our systems approach reveals a midgut metabolism of the unfed tick that is prepared to sense and process an anticipated blood meal.ConclusionsThis multiple-omics study vastly extends the publicly available DNA and RNA databases for I. ricinus, paving the way for further in-depth analysis of the most important European disease vector and its interactions with pathogens and hosts.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1981-7) contains supplementary material, which is available to authorized users.
Abstract:Borrelia species fall into two groups, the Borrelia burgdorferi sensu lato (Bbsl) complex the cause of Lyme borreliosis (LB; also known as Lyme disease LD) and the relapsing fever group. Both groups exhibit inter and intra species diversity and thus, have variations in both clinical presentation and diagnostic approaches. A further layer of complexity is derived from the fact that ticks may carry multiple infectious agents and are able to transmit them to the host during blood feeding, with potential overlapping clinical manifestations. Besides this, pathogens like Borrelia have developed strategies to evade the host immune system, which allows them to persist within the host, including humans.Diagnostics can be applied at different times during the clinical course and utilise sample types, each with their own advantages and limitations. These differing methods should always be considered in conjunction with potential exposure and compatible clinical features. Throughout this review, we aim to explore different approaches providing the reader with an overview of methods appropriate for various situations. This review will cover human pathogenic members of Bbsl and relapsing fever borreliae, including newly recognised B. miyamotoi spirochetes.
BackgroundGlobal warming and other ecological changes have facilitated the expansion of Ixodes ricinus tick populations. Ixodes ricinus is the most important carrier of vector-borne pathogens in Europe, transmitting viruses, protozoa and bacteria, in particular Borrelia burgdorferi (sensu lato), the causative agent of Lyme borreliosis, the most prevalent vector-borne disease in humans in the Northern hemisphere. To faster control this disease vector, a better understanding of the I. ricinus tick is necessary. To facilitate such studies, we recently published the first reference genome of this highly prevalent pathogen vector. Here, we further extend these studies by scaffolding and annotating the first reference genome by using ultra-long sequencing reads from third generation single molecule sequencing. In addition, we present the first genome size estimation for I. ricinus ticks and the embryo-derived cell line IRE/CTVM19.Results235,953 contigs were integrated into 204,904 scaffolds, extending the currently known genome lengths by more than 30% from 393 to 516 Mb and the N50 contig value by 87% from 1643 bp to a N50 scaffold value of 3067 bp. In addition, 25,263 sequences were annotated by comparison to the tick’s North American relative Ixodes scapularis. After (conserved) hypothetical proteins, zinc finger proteins, secreted proteins and P450 coding proteins were the most prevalent protein categories annotated. Interestingly, more than 50% of the amino acid sequences matching the homology threshold had 95–100% identity to the corresponding I. scapularis gene models. The sequence information was complemented by the first genome size estimation for this species. Flow cytometry-based genome size analysis revealed a haploid genome size of 2.65Gb for I. ricinus ticks and 3.80 Gb for the cell line.ConclusionsWe present a first draft sequence map of the I. ricinus genome based on a PacBio-Illumina assembly. The I. ricinus genome was shown to be 26% (500 Mb) larger than the genome of its American relative I. scapularis. Based on the genome size of 2.65 Gb we estimated that we covered about 67% of the non-repetitive sequences. Genome annotation will facilitate screening for specific molecular pathways in I. ricinus cells and provides an overview of characteristics and functions.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-017-2008-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.