Due to the inconvenient and invasive nature of chondrocyte transplantation, preserved cartilage has been recognized as an alternative source of chondrocytes for implantation. However, there are major concerns, in particular, the viability and quality of the chondrocytes. This study investigated the biochemistry and molecular characterization of chondrocytes isolated from preserved cartilage for purposes of transplantation. Ex vivo characterization was accomplished by storing human cartilage at either 4 or -80 °C in a preservation medium. Microscopic evaluation of the preserved cartilage was conducted after 1, 2, 3 and 6 weeks. The chondrocytes were isolated from the preserved cartilage and investigated for proliferation capacity and chondrogenic phenotype. Transplantation of chondrocytes from preserved cartilage into rabbit knees was performed for purposes of in vivo evaluation. The serum cartilage degradation biomarker (WF6 epitopes) was evaluated during the transplantation procedure. Human cartilage preserved for 1 week in a 10 % DMSO chondrogenic medium at 4 °C gave the highest chondrocyte viability. The isolated chondrocytes showed a high proliferative capacity and retained chondrogenic gene expression. Microscopic assessment of the implanted rabbit knees showed tissue regeneration and integration with the host cartilage. A decreased level of the serum biomarker after transplantation was evidence of in vivo repair by the implanted chondrocytes. These results suggest that cartilage preservation for 1 week in a 10 % DMSO chondrogenic medium at 4 °C can maintain proliferation capacity and the chondrogenic phenotype of human chondrocytes. These results can potentially be applied to in vivo allogeneic chondrocyte transplantation. Allogeneic chondrocytes from preserved cartilage would be expected to maintain their chondrogenic phenotype and to result in a high rate of success in transplanted grafts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.